Supply Chain Management (SCM) is een thema, waarover intussen al meer dan een decennium gediscussieerd wordt en waaraan een hoog rationaliseringspotentieel wordt toegeschreven. Het thema SCM geniet veel aandacht binnen de grote ondernemingen. Maar hoe staat het met de toepassing van Supply Chain Management binnen het MKB? Van algemene Supply Chains, de keten vanaf het aanleveren van grondstoffen tot aan de aflevering van het product bij de eindverbruiker, maken immers ook middelgrote en kleine bedrijven (MKB) deel uit. Maar het MKB beschikt vaak niet over de informatie en de capaciteiten om zich in voldoende mate met het thema bezig te houden. Natuurlijk zien we wel toepassingen van SCM-concepten binnen het MKB, maar dan zijn deze vaak opgelegd door grote spelers in de keten
DOCUMENT
Consumers expect product availability as well as product quality and safety in retail outlets. When designing or re-designing fruit and vegetables supply chain networks one has to take these demands into consideration next to traditional efficiency and responsiveness requirements. In food science literature, much attention has been paid to the development of Time-Temperature Indicators to monitor individually the temperature conditions of food products throughout distribution as well as quality decay models that are able to predict product quality based upon this information. This chapter discusses opportunities to improve the design and management of fruit and vegetables supply chain networks. If product quality in each step of the supply chain can be predicted in advance, good flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, higher product quality, and less product losses in retail. This chapter works towards a preliminary diagnostic instrument, which can be used to assess supply chain networks on QCL (Quality Controlled Logistics). Findings of two exploratory case studies, one on the tomato chain and one on the mango chain, are presented to illustrate the value of this concept. Results show the opportunities and bottlenecks for quality controlled logistics depend on product—(e.g. variability in quality), process—(e.g. ability to use containers and sort on quality), network- (e.g. current level of cooperation), and market characteristics (e.g. higher prices for better products).
DOCUMENT
Analyse the results from a representative selection of the supply chain studies for school feeding programmes in Kenya, Ghana and Mali, and make specific suggestions for interventions that can efficiently include SHF in the supply chains.
DOCUMENT
Presentatie van de lectorale rede.
DOCUMENT
From the article: "Abstract Maintenance processes of Dutch housing associations are often still organized in a traditional manner. Contracts are based on lowest price instead of ‘best quality for lowest price’ considering users’ demands. Dutch housing associations acknowledge the need to improve their maintenance processes in order to lower maintenance cost, but are not sure how. In this research, this problem is addressed by investigating different supply chain partnering principles and the role of information management. The main question is “How can the organisation of maintenance processes of Dutch housing associations, in different supply chain partnering principles and the related information management, be improved?” The answer is sought through case study research."
DOCUMENT
Western-European consumers have become not only more demanding on product availability in retail outlets but also on other food attributes such as quality, integrity, and safety. When (re)designing food supply-chain networks, from a logistics point of view, one has to consider these demands next to traditional efficiency and responsiveness requirements. The concept ‘quality controlled logistics’ (QCL) hypothesizes that if product quality in each step of the supply chain can be predicted in advance, goods flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, constant quality, and less product losses. The paper discusses opportunities of using real-time product quality information for improvement of the design and management of ‘AgriFood Supply Chain Networks’, and presents a preliminary diagnostic instrument for assessment of ‘critical quality’ and ‘logistics control’ points in the supply chain network. Results of a tomato-chain case illustrate the added value of the QCL concept for identifying improvement opportunities in the supply chain as to increase both product availability and quality. Future research aims for the further development of the diagnostic instrument and the quantification of costs and benefits of QCL scenarios.
DOCUMENT
Food security depends on a network of actors and elements working together to produce and deliver healthy, sustainable, varied, safe and plentiful food supply to society. The interactions between these actors and elements must be designed, managed and optimized to satisfy demand. In this chapter we introduce Food Supply Chain Optimization and Demand, providing a framework to understand and improve food security from an operational and strategic point of view.
DOCUMENT
This study aims at uncovering intra-organizational dynamics in implementing supply chain partnering. Narrative techniques are used in a qualitative case study in a Dutch housing association. This study shows how project leaders of a Dutch housing association perceive relationships in the internal supply chain and the strategies that they develop to cope with these relationships. Furthermore, it is argued that key values of SCP as understood by the project leaders – such as sharing responsibilities and addressing feedback towards each other openly – are not applied in intra-organizational relationships. [ABSTRACT FROM PUBLISHER]
LINK
The possibilities of balancing gas supply and demand with a green gas supply chain were analyzed. The considered supply chain is based on co-digestion of cow manure and maize, the produced biogas is upgraded to (Dutch) natural gas standards. The applicability of modeling yearly gas demand data in a geographical region by Fourier analysis was investigated. For a sine shape gas demand, three scenarios were further investigated: varying biogas production in time, adding gas storage to a supply chain, and adding a second digester to the supply chain which is assumed to be switched off during the summer months. A regional gas demand modeled by a sine function is reasonable for household type of users as well as for business areas, or a mixture of those. Of the considered scenarios, gas storage is by far the most expensive. When gas demand has to be met by a green gas supply chain, flexible biogas production is an interesting option. Further research in this direction might open interesting pathways to sustainable gas supply chains.
DOCUMENT
Biogas production from codigestion of cattle manure and biomass can have a significant contribution to a sustainable gas supply when this gas is upgraded to specifications prescribed for injection into the national gas grid and injected into this grid. In this study, we analyzed such a gas supply chain in a Dutch situation. A model was developed with which the cost price per m n3 was presented as a function of scale level (m n3/hr). The hypothesis that transport costs increase with increasing scale level was confirmed although this is not the main factor influencing the cost price for the considered production scales. For farm-scale gas supply chains (approximately 150-250 m n3/h green gas), a significant improvement is expected from decreasing costs of digesters and upgrading installations, and efficiency improvement of digesters. In this study also practical sustainability criteria for such a supply chain were investigated. For this reason, the digestate from the digester should be used as a fertilizer. For larger scale levels, the number of transport movements and energy use in the supply chain seem to become a limiting factor with respect to sustainability. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOCUMENT