Op 20 januari 2022 sprak mr. dr. Bart Wernaart zijn lectorale rede “Building value-based technology together" uit. Aansluitend werd Bart geïnstalleerd als lector Moral Design Strategy binnen Fontys Hogeschool Economie en Communicatie. Op deze website een verslag van alle onderdelen van die dag.
LINK
Deze publicatie richt zich vooral op het concept Design Based Research,gezien vanuit het perspectief van de bijna 40 lectoren die de hogeschool rijk is. Dit lectoratenoverzicht kan worden beschouwd als een atlas of reisgids waarmee de lezer een route kan afleggen langs de verschillende lectoraten. De lectoraten die actief zijn op het gebied van de Service Economy worden beschreven in hoofdstuk 2. De lectoraten die actief zijn op het gebied van Vitale Regio worden beschreven in hoofdstuk 3. De lectoraten die actief zijn op het gebied van Smart Sustainable Industries worden beschreven in hoofdstuk 4. De lectoraten die actief zijn op het gebied van de hogeschoolbrede thema’s Design Based Education en Research worden beschreven in hoofdstuk 5. Tenslotte wordt er in hoofdstuk 6 een eerste aanzet gedaan om één of meer verbindende thema’s of werkwijzen te ontdekken in de aanpak van de verschillende lectoraten. Het is niet de bedoeling van deze publicatie om een definitief antwoord te geven op de vraag wat NHL Stenden precies bedoelt met het concept Design Based Research. Het doel van deze publicatie is wel om een indruk te krijgen van wat er allemaal gebeurt binnnen de lectoraten van NHL Stenden, en om nieuwsgierig te worden naar meer.
DOCUMENT
When should a surveillance system that is used in preventive policing sacrifice the privacy of citizens to prevent criminality? What should be the impact of individual moral expectations when a social media platform designs an algorithm? To what degree can we use technology-driven deception in dementia care practices? And can we create a moral compass for a dashboard society? Over the last decade, the impact of technological innovation has been unprecedented. It has profoundly changed the way we participate and interact in society. It has also led to new moral challenges. Not only because of the technology itself, but also because this technology is used in the context of a globalised world with a more prominent role for the private sector. This can result in moral confusion: individuals who alternately assume the role of citizen and consumer feel unable to influence the design of technology that has a strong impact on their core values. Sustaining this moral confusion is in nobody's long-term interest. In this book, we propose to overcome this moral confusion by using a bottom-up design approach that incubates ethics when constructing new technologies. This book is composed of four parts. In the first part we focus on how to integrate moral decisions and morality in the design process of new technology. In the second part we assess how moral design relates to related discourse, including business ethics, law and policy. In the third part of this book various case studies are highlighted that focus on particular moral design issues at the crossroads of technological innovation in the public and private sector. In the last part we look ahead and discuss what the future might look like if we use moral design as a central approach in creating new technology. This book is relevant for IT and engineering professionals, business leaders and policymakers with innovation in their portfolios, and students of (applied) science who are interested in the moral design of technology. The chapters are written by experts and leading researchers in an attractive, accessible and practical writing style. Each chapter offers colourful examples and challenges the reader to critically think through moral decision-making and the design of innovation. Only table of contents, sample pages and author information can be seen.
LINK
Background: Due to the globally increasing demand for care, innovation is important to maintain quality, safety, effectiveness, patient sensitivity, and outcome orientation. Health care technologies could be a solution to innovate, maintain, or improve the quality of care and simultaneously decrease nurses’ workload. Currently, nurses are rarely involved in the design of health care technologies, mostly due to time constraints with clinical nursing responsibilities and limited exposure to technology and design disciplines. To ensure that health care technologies fit into nurses’ core and routine practice, nurses should be actively involved in the design process. Objective: The aim of the present study was to explore the main requirements for nurses’ active participation in the design of health care technologies. Design: An exploratory descriptive qualitative design was used which helps to both understand and describe a phenomenon. Participants: Twelve nurses from three academic hospitals in the Netherlands participated in this study. Method: Data were collected from semistructured interviews with hospital nurses experienced in design programs and thematically analysed. Results: Four themes were identified concerning the main requirements for nurses to participate in the design of health care technologies: (1) nurses’ motivations to participate, (2) the process of technology development, (3) required competence to participate (such as assertiveness, creative thinking, problem solving skills), and (4) facilitating and organizing nurses’ participation. Conclusion: Nurses experience their involvement in the design process as essential, distinctive, and meaningful but experience few possibilities to combine this work with their current workload, flows, routines, and requirements. To participate in the design of health care technologies nurses need motivation and specific competencies. Organizations should facilitate time for nurses to acquire the required competencies and to be intentionally involved in technology design and development activities.
DOCUMENT
Het lectoraat Co-Design van Hogeschool Utrecht doet met een systemisch-inclusieve ontwerpende aanpak praktijkgericht onderzoek, om complexe maatschappelijke vraagstukken te helpen oplossen. Binnen die onderzoeken stellen we vragen over het ontwerpproces en de mensen die daarbij betrokken zijn. Hoe kun je goed co-designen in de weerbarstige werkelijkheid? Wat kan helpen in die ontwerpende aanpak? Hoe kunnen mensen die niet zijn opgeleid als ontwerpers volwaardig meedoen in het ontwerpproces, en wat hebben zij daarvoor nodig aan ontwerpend vermogen? De kennis over ontwerpend vermogen die we de afgelopen vier jaar hebben opgedaan, delen we in dit boekje. We hebben dat proces getekend en beschreven als een reisverhaal van Co, die ons meeneemt op een boot over een rivier, door stroomversnellingen en langs landschappen. Met bijdragen van: Marry Bassa, Anita Cremers, Tanja Enninga, Anita van Essen, Christa van Gessel, Berit Godfroij, Joep Kuijper, Remko van der Lugt, Caroline Maessen, Lenny van Onselen, Dirk Ploos van Amstel, Karlijn van Ramshorst, Carolijn Schrijver, Fenne Verhoeven, Danielle Vossebeld, Rosa de Vries
DOCUMENT
We need look no further than the use of email communication, mobile phones and cars to understand that technology has wide-ranging social consequences. What is more, designers are plainly not always aware of the social consequences of technology, despite practicing user-centred design. Email, for instance, was developed as an efficient mode of communication between two actors. As we all know, the introduction of email has fundamentally changed traditional business and office practices. These side effects were not identified until long after email was introduced. During recent years, designers have grown increasingly interested in these social aspects. Modern information technology, in particular, creates extensive possibilities to influence social behaviour. Persuasive technology has been developed to increase, e.g., environmental friendliness. Once a designer aims at defined social changes, the consequences of technology for practices become a responsibility, too. The present research is aimed at providing tools and methods to anticipate social consequences at an earlier stage of the design process. These consequences of technologies in social environments will be called social impacts. In order to be a meaningful concept for designers the characteristics of a particular technology that are responsible for social impacts must be identified. Social consequences of technologies have not been observed very thoroughly from a user-centred design point of view. Therefore, this thesis is aimed, not only at gaining knowledge about social impact, but also translating these insights into workable instruments for designers. This leads to the following research questions:1. What relations can be identified between social impacts and characteristics oftechnologies?2. How can a designer anticipate social impact?3. How can social impact be managed in design environments?
DOCUMENT
Technology in general, and assistive technology in particular, is considered to be a promising opportunity to address the challenges of an aging population. Nevertheless, in health care, technology is not as widely used as could be expected. In this chapter, an overview is given of theories and models that help to understand this phenomenon. First, the design of (assistive) technologies will be addressed and the importance of human-centered design in the development of new assistive devices will be discussed. Also theories and models are addressed about technology acceptance in general. Specific attention will be given to technology acceptance in healthcare professionals, and the implementation of technology within healthcare organizations. The chapter will be based on the state of the art of scientific literature and will be illustrated with examples from our research in daily practice considering the different perspectives of involved stakeholders.
LINK
Advanced technology is a primary solution for the shortage of care professionals and increasing demand for care, and thus acceptance of such technology is paramount. This study investigates factors that increase use of advanced technology during elderly care, focusing on current use of advanced technology, factors that influence its use, and care professionals’ experiences with the use. This study uses a mixed-method design. Logfiles were used (longitudinal design) to determine current use of advanced technology, questionnaires assessed which factors increase such use, and in-depth interviews were administered to retrieve care professionals’ experiences. Findings suggest that 73% of care professionals use advanced technology, such as camera monitoring, and consult clients’ records electronically. Six of nine hypotheses tested in this study were supported, with correlations strongest between performance expectancy and attitudes toward use, attitudes toward use and satisfaction, and effort expectancy and performance expectancy. Suggested improvements for advanced technology include expanding client information, adding report functionality, solving log-in problems, and increasing speed. Moreover, the quickest way to increase acceptance is by improving performance expectancy. Care professionals scored performance expectancy of advanced technology lowest, though it had the strongest effect on attitudes toward the technology.
DOCUMENT
Using language adequately within technology tasks is part of technological literacy. However, this can be challenging for students, and a teacher may need to help students to master aspects of domain specific language that matter for the task at hand. In this study, a curricular design was developed through a series of trials, with the aim to arrive at general principles for a pedagogy that helps students to write about an engineering (electronics) design. The curricular design was theoretically anchored in ‘genre pedagogy’. The interventions were carried out by one experienced teacher in one course, during three consecutive cycles of trialling and improving the curricular design. The resulting design principles for teaching to write about (engineering) design are concerned with: a relevant, complete and feasible focus on language; scaffolding the writing process; procedures for teacher support. For each of these, specifications are described.
DOCUMENT
From the article: "Abstract, technology-enhanced learning can be used to replicate existing teaching practices, supplement existing teaching or transform teaching and/or learning process and outcomes. Enhancing workplace learning, which is integrated into higher professional education, with technology, calls for designing such transformations. Although research is carried out into different kinds of technological solutions to enhance workplace learning, we do not know which principles should guide such designs. Therefore, we carried out an explorative, qualitative study and found two such design principles for the design of technology-enhanced workplace learning in higher professional education. In this research, we focused on the students' perspective, since they are the main users of such technology when they are learning at the workplace, as part of their study in becoming lifelong learning, competent professionals."
DOCUMENT