In het werkveld van Life Sciences & Chemistry heeft Innovative testing te maken met het testen van stoffen op hun werking en veiligheid. Met stoffen wordt hier bedoeld alle mogelijke chemicaliën waar aan we blootgesteld worden, zoals chemicaliën in onze leef- en werkomgeving, medicijnen (inclusief biologicals), maar ook stoffen in de voeding (inclusief voedselbestanddelen en natuurlijke stoffen). Mijn les zal echter voornamelijk gaan over de laatste twee categorieën, medicijnen en stoffen in de voeding. Ik wil in mijn openbare les eerst uiteenzetten waarom het zo belangrijk is om vast te stellen wat de werking en veiligheid van stoffen is. Vervolgens wil ik beschrijven welke innovaties op dit moment al plaatsvinden, in de toxicologie en de farmacologie. Dit wil ik doen om aan te geven waar de parallellen en mogelijkheden voor synergie liggen. Daarna zal ik aan de hand van een aantal voorbeelden aangeven tegen welke grenzen men zoal aanloopt bij het testen van werking en veiligheid van stoffen, om daarbij ook aan te geven dat er duidelijk aanwijzingen zijn voor het vervagen van grenzen tussen farmacologie en toxicologie. Tot slot zal ik aangeven welke rol het Kenniscentrum Life Sciences & Chemistry van Hogeschool Utrecht op het gebied van onderzoek én onderwijs in het werkveld van Innovative testing in Life Sciences & Chemistry wil gaan spelen.
DOCUMENT
In de openbare les van mijn collega lector Raymond Pieters, is het domein van het lectoraat ‘Innovative Testing in Life Sciences & Chemistry’ toegelicht. Kort samengevat richt dit lectoraat zich op de ontwikkeling en toepassing van innovatieve teststrategieën om geneesmiddelen, voedingsmiddelen of chemicaliën (stoffen) te beoordelen op hun werkzaamheid (effectiviteit) en veiligheid. De nadruk ligt op de ontwikkeling van snelle, kosteneffectieve testmethoden die een relevante voorspelling van effecten op de gezondheid van de mens en het milieu opleveren én waarbij geen of minder proefdieren worden gebruikt. In mijn les zal ik u laten zien waar proefdieren voor gebruikt worden. Hierbij zal ik mij voornamelijk richten op de Nederlandse situatie. Ik zal ingaan op de wetenschappelijke en maatschappelijke wens om minder proefdieren te gebruiken en op de vraag wat we verstaan onder ‘alternatieven voor dierproeven’. Daarna zal ik bespreken waarom er in Nederland en Europa recentelijk meer aandacht is voor dit onderwerp. Het overzicht zal niet uitputtend zijn, maar zal u een goede indruk geven van het landschap. Ook zal ik stil staan bij de vraag: Waarom zijn we tot nog toe zo weinig succesvol geweest op het gebied van alternatieven voor dierproeven? Wat zijn de obstakels en wat kunnen we hier van leren? Hoe zouden we in de praktijk de toepassing van alternatieven kunnen stimuleren? Wat moet er beter, en hoe gaan we dat doen? Als we slimmer willen testen moeten we de huidige grenzen verleggen, of beter over de grenzen van ons vakgebied heen kijken. Ik zal aangeven waar prioriteiten liggen en hoe we de meeste ‘winst’ kunnen behalen in termen van proefdiervermindering in relatie tot productinnovatie. Tot slot zal ik aangeven welke bruggen we moeten bouwen en wat de rol is van de Hogeschool Utrecht
DOCUMENT
Ongeveer een derde van onze nationale energieconsumptie wordt gebruikt in gebouwen voor verwarming, koeling, verlichting en elektrische apparatuur. Milieuoverwegingen, voorzieningszekerheid en kosten maken dat wij slim met de energievoorziening in de gebouwde omgeving om moeten gaan. Maar alle slimheid, innovatie en creativiteit ten spijt is het gasverbruik van woningen gebouwd in 2010 niet lager dan van woningen gebouwd in 1995, zijn de woningen niet gezonder geworden, gebruikt de gebouwde omgeving ook nog ieder jaar meer elektriciteit en zijn er nauwelijks duurzame installaties die naar behoren werken. Wat leren wij daarvan? Hoe zorgen wij ervoor dat duurzaamheid meer dan een losse kreet wordt en onze hele energieketen echt duurzaam wordt? Naast innovatie en creativiteit zijn kennis en vakmanschap belangrijk. Systemen modelleren en simuleren, en het gebruiken van virtual environments om grip te krijgen op het ontwerp, regeling en onderhoud van complexe binnenklimaatinstallaties en energie-installaties zullen hierbij in de toekomst een steeds belangrijkere rol gaan spelen.
DOCUMENT
Plastic products are currently been critically reviewed due to the growing awareness on the related problems, such as the “plastic soup”. EU has introduced a ban for a number of single-use consumer products and fossil-based polymers coming in force in 2021. The list of banned products are expected to be extended, for example for single-use, non-compostable plastics in horticulture and agriculture. Therefore, it is crucial to develop sustainable, biodegradable alternatives. A significant amount of research has been performed on biobased polymers. However, plastics are made from a polymer mixed with other materials, additives, which are essential for the plastics production and performance. Development of biodegradable solutions for these additives is lacking, but is urgently needed. Biocarbon (Biochar), is a high-carbon, fine-grained residue that is produced through pyrolysis processes. This natural product is currently used to produce energy, but the recent research indicate that it has a great potential in enhancing biopolymer properties. The biocarbon-biopolymer composite could provide a much needed fully biodegradable solution. This would be especially interesting in agricultural and horticultural applications, since biocarbon has been found to be effective at retaining water and water-soluble nutrients and to increase micro-organism activity in soil. Biocarbon-biocomposite may also be used for other markets, where biodegradability is essential, including packaging and disposable consumer articles. The BioADD consortium consists of 9 industrial partners, a branch organization and 3 research partners. The partner companies form a complementary team, including biomass providers, pyrolysis technology manufacturers and companies producing products to the relevant markets of horticulture, agriculture and packaging. For each of the companies the successful result from the project will lead to concrete business opportunities. The support of Avans, University of Groningen and Eindhoven University of Technology is essential in developing the know-how and the first product development making the innovation possible.
Aanleiding Nieuwe stoffen en producten van de farmaceutische sector en de (agro)chemie moeten uitgebreid getest worden voordat ze op de markt kunnen verschijnen. Voor die testen is nu nog een groot aantal proefdieren nodig. Dit stuit echter op een aantal bezwaren: de uitkomsten van deze studies zijn niet altijd goed vertaalbaar naar effecten bij de mens, proefdierstudies zijn duur en de ethische kant van dierproeven staat steeds vaker ter discussie. Bedrijven zijn naarstig op zoek naar alternatieve testsystemen die ervoor kunnen zorgen dat proefdierstudies met zoogdieren worden verminderd, verfijnd en vervangen (de drie V's). Doelstelling In twee eerdere RAAK-projecten is ontdekt dat nematode C. elegans een kansrijk alternatief voor dierproeven is. Het is nu aan het multidisciplinaire team van Elegant! om de potentie van deze rondworm uit te bouwen en te ontwikkelen in een gevalideerd onderzoeksmodel voor de chemische, agrochemische en farmaceutische sector. Zij gaan C. elegans inzetten als alternatief testmodel om complexe responsen te meten. De vragen die zij willen beantwoorden met het onderzoek zijn: " Hoe effectief is het gebruik van C. elegans als alternatief testsysteem in het voorspellen van mogelijke toxische effecten en farmaceutische activiteiten? " In hoeverre kan C. elegans een meerwaarde hebben met betrekking tot het bestuderen en begrijpen van het onderliggende werkingsmechanisme? Beoogde resultaten Het resultaat van het project is kennis over de effectiviteit van C. elegans als alternatief systeem voor het screenen van stoffen op veiligheid en activiteit. Tijdens het onderzoek wordt er ook nieuwe technologie ontwikkeld, waaronder: " een productieproces voor de continue aanlevering van wormen; " lab-on-chipmodule voor high-throughput microscopie; " zelfregulerende mappingtool voor verzameling en interpretatie van data.
Organ-on-a-chip technology holds great promise to revolutionize pharmaceutical drug discovery and development which nowadays is a tremendously expensive and inefficient process. It will enable faster, cheaper, physiologically relevant, and more reliable (standardized) assays for biomedical science and drug testing. In particular, it is anticipated that organ-on-a-chip technology can substantially replace animal drug testing with using the by far better models of true human cells. Despite this great potential and progress in the field, the technology still lacks standardized protocols and robust chip devices, which are absolutely needed for this technology to bring the abovementioned potential to fruition. Of particular interest is heart-on-a-chip for drug and cardiotoxicity screening. There is presently no preclinical test system predicting the most important features of cardiac safety accurately and cost-effectively. The main goal of this project is to fabricate standardized, robust generic heart-on-a-chip demonstrator devices that will be validated and further optimized to generate new physiologically relevant models to study cardiotoxicity in vitro. To achieve this goal various aspects will be considered, including (i) the search for alternative chip materials to replace PDMS, (ii) inner chip surface modification and treatment (chemistry and topology), (iii) achieving 2D/3D cardiomyocyte (long term) cell culture and cellular alignment within the chip device, (iv) the possibility of integrating in-line sensors in the devices and, finally, (v) the overall chip design. The achieved standardized heart-on-a-chip technology will be adopted by pharmaceutical industry. This proposed project offers a unique opportunity for the Netherlands, and Twente in particular, which has relevant expertise, potential, and future perspective in this field as it hosts world-leading companies pioneering various core aspects of the technology that are relevant for organs-on-chips, combined with two world-leading research institutes within the University of Twente.