This study evaluates the maximum theoretical exposure to radiofrequency (RF) electromag- netic fields (EMFs) from a Fifth-generation (5G) New Radio (NR) base station (BS) while using four commonly used mobile applications: YouTube for video streaming, WhatsApp for voice calls, Instagram for posting pictures and videos, and running a Video game. Three factors that might affect exposure, i.e., distance of the measurement positions from the BS, measurement time, and induced traffic, were examined. Exposure was assessed through both instantaneous and time-averaged extrapolated field strengths using the Maximum Power Extrapolation (MPE) method. The former was calculated for every measured SS-RSRP (Secondary Synchronization Reference Signal Received Power) power sample obtained with a sampling resolution of 1 second, whereas the latter was obtained using a 1-min moving average applied on the applications’ instantaneous extrapolated field strengths datasets. Regarding distance, two measurement positions (MPs) were selected: MP1 at 56 meters and MP2 at 170 meters. Next, considering the measurement time, all mobile application tests were initially set to run for 30 minutes at both MPs, whereas the video streaming test (YouTube) was run for an additional 150 minutes to investigate the temporal evolution of field strengths. Considering the traffic, throughput data vs. both instantaneous and time-averaged extrapolated field strengths were observed for all four mobile applications. In addition, at MP1, a 30-minute test without a User Equipment (UE) device was conducted to analyze exposure levels in the absence of induced traffic. The findings indicated that the estimated field strengths for mobile applications varied. It was observed that distance and time had a more significant impact than the volume of data traffic generated (throughput). Notably, the exposure levels in all tests were considerably lower than the public exposure thresholds set by the ICNIRP guidelines.INDEX TERMS 5G NR, C-band, human exposure assessment, mobile applications, traffic data, maximum extrapolation method, RF-EMF.
MULTIFILE
The EU project X-TEAM D2D focuses on future seamless door-to-door mobility, considering the experiences from Air Traffic Management and the currently available and possible future transport modalities in overall multimodal traffic until 2050. This paper deals with developing a Concept of Operations of an intermodal transport system with special consideration of the pabengers' satisfaction with up to 4-hour journeys. For this purpose, the influences of quality management systems and other organizational facilities on the quality of pabenger travel in the transport system were examined. In the study, integration of various management systems, like resources, traffic information, energy, fleet emergency calls, security and infrastructure, and applications such as weather information platforms and tracking systems, is expected.
Nowadays we are living in a highly dynamic world with variety of factors shaping urban mobility of today and tomorrow. The presentation connected on-going developments with the traffic management trends and explained the impact on the future professionals, skills and competences to be developped
Betonprinten biedt veel nieuwe mogelijkheden op het gebied van productie en materiaal, maar vraagt van het MKB en startups flinke investeringen in kennis en middelen om er mee aan de slag te gaan. Met name slicer software, dat 3D modellen omzet naar printercode, vormt een bottleneck omdat deze alleen commercieel en printer-specifiek verkrijgbaar zijn. Saxion, Vertico en White Lioness willen in dit project de haalbaarheid van gratis open source slicer software die als cloud dienst wordt aangeboden onderzoeken. Deze oplossing maakt betonprinten bereikbaar voor meer innovatieve toepassingen vanuit MKB en startups, en vormt een platform voor het verzamelen en delen van kennis op het gebied van betonprinten.
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.