In this paper, we present the challenges, failures and successes on urban freight transportation. We first identify the various involved stakeholders with their interests. Then we evaluate a large number of urban freight transport initiatives and identify lessons learned, which are distinguished in policy, logistics and technology based views. Further, we present a vision for urban freight transportation, which is not only based on the lessons learned, but also on actual market research reports and recent findings.
LINK
The transition from diesel-driven urban freight transport towards more electric urban freight transport turns out to be challenging in practice. A major concern for transport operators is how to find a reliable charging strategy for a larger electric vehicle fleet that provides flexibility based on different daily mission profiles within that fleet, while also minimizing costs. This contribution assesses the trade-off between a large battery pack and opportunity charging with regard to costs and operational constraints. Based on a case study with 39 electric freight vehicles that have been used by a parcel delivery company and a courier company in daily operations for over a year, various scenarios have been analyzed by means of a TCO analysis. Although a large battery allows for more flexibility in planning, opportunity charging can provide a feasible alternative, especially in the case of varying mission profiles. Additional personnel costs during opportunity charging can be avoided as much as possible by a well-integrated charging strategy, which can be realized by a reservation system that minimizes the risk of occupied charging stations and a dense network of charging stations.
MULTIFILE
Cities’ sustainability strategies seem to aim at the reduction of the negative impacts of urban freight transport. In the past decades, many public and private initiatives have struggled to gain broad stakeholder support and thus remain viable. Researchers and practitioners have only recently recognised stakeholder acceptance of urban freight solutions as a challenge. A first step in achieving convergence is to understand stakeholder needs, preferences and viewpoints. This paper proposes and applies an approach to identify the main stakeholder perspectives in the domain of urban freight transport. We use Q-methodology, which originates from social sciences and psychology, to record subjective positions and identify the dominant ones. We explain the approach, operationalise the method for the domain of urban freight transport and apply it to stakeholder groups in the Netherlands. We find four dominant perspectives, reflecting how stakeholders normally take positions in the urban freight dialogue. Important findings concern disparities between industry associations and some of their membership, divergent views about the expected role of public administration, and the observation that the behaviour of shippers and Logistics Service Providers (LSP) appears to be inconsistent with their beliefs. All these factors together can act as a barrier to the implementation of urban freight consolidation concepts. The Q-methodology is valuable for eliciting perspectives in urban freight and is a promising tool to facilitate stakeholder dialogue and, eventually, convergence.
LINK
The paper discusses the growing importance of urban freight research given the increasing urban population trends. The complexity of urban freight systems means that it is essential for the public and private sectors to work together - one way to achieve this has been through freight partnerships. A short review of freight partnerships highlights the way in which they have fostered mutual understanding among urban freight stakeholders. The literature on shared situational awareness (SSA) and joint knowledge production (JKP) has been adapted to position freight partnerships and to further develop and link these partnerships to the concept of a living laboratory concerned with urban freight transport. This novel application of the living lab concept is introduced. Next, the first phases of a city logistics living lab brought in practice in Rotterdam are shortly mentioned. The living lab concept fits the complexities of the urban freight system well and has been a cornerstone of a recently started major freight project in the EU (CITYLAB). © 2016 Published by Elsevier B.V.
MULTIFILE
The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the livability of cities. Freight vehicles are large contributors to polluting air and CO2 emissions and generate problems in terms of safety, noise and loss of public space. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can maneuver easily and do not emit local pollution. There is an increasing interest in these vehicle, called light electric freight vehicles (LEFV’s), among logistic service providers in European cities. However, various technical and operational challenges impede large scale implementation. Within the two-year LEVV-LOGIC project, (2016-2018) the use of LEFV’s for city logistics is explored. The project combines expertise on logistics, vehicle design, charging infrastructure and business modelling to find the optimal concept in which LEFV’s can be a financial competitive alternative for conventional freight vehicles. This contribution to EVS30 will present the project’s first year results, showing the guideline for and the applied design of LEFV for future urban city logistics.
DOCUMENT
In the city of Amsterdam commercial transport is responsible for 15% of vehicles, 34% of traffic’s CO2 emissions and 62% of NOx emissions. The City of Amsterdam plans to improve traffic flows using real time traffic data and data about loading and unloading zones. In this paper, we present, reflect, and discuss the results of two projects from the Amsterdam University of Applied Sciences with research partners from 2016 till 2018. The ITSLOG and Sailor projects aim to analyze and test the benefits and challenges of connecting ITS and traffic management to urban freight transport, by using real-time data about loading and unloading zone availability for rerouting trucks. New technologies were developed and tested in collaboration with local authorities, transport companies and a food retailer. This paper presents and discusses the opportunities and challenges faced in developing and implementing this new technology, as well as the role played by different stakeholders. In both projects, the human factor was critical for the implementation of new technologies in practice.
MULTIFILE
The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the liveability of cities. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can manoeuvre easily and free from polluting emissions. Within the two-year LEVV-LOGIC project, (2016-2018) the use of light electric freight vehicles (LEFVs) for city logistics is explored. The project combines expertise on logistics, vehicle design, charging infrastructure and business modelling to find the optimal concept. This paper presents guidelines for the design of LEFV based on the standardized rolling container (length 800 mm, width 640 mm, height 1600 mm) and for the charging infrastructure.
DOCUMENT
The number of light commercial vehicles in cities is growing, which puts increasing pressure on the liveability of cities. Light electric freight vehicles (LEFV) and cargo bikes can offer a solution, as they occupy less space, can be manoeuvred easily and does not emit tailpipe pollutants. This paper presents the results of the first half-year of the LEVV-LOGIC project (2016-2018), aimed at exploring the potential of LEFVs for various urban freight flows. Delivery characteristics, trends, practical examples and the judgement of experts are combined to assess the potential of LEFVs for seven major urban freight flows. The preliminary analysis concludes that every urban freight flow has a certain level of potential for using LEFV. In particular parcel and food deliveries have high potential; however, deliveries related to services and the last phase of construction work can also be switched to LEFV. In comparison, non-food deliveries to retail establishments and the collection of waste collection have less potential. Though the latter can change when recycling standards become higher.
DOCUMENT
Urban Consolidation Centres (UCCs) are often put forward as a solution to reduce the negative impact of freight transport on cities. However, few UCCs have so far successfully attracted sufficient volume to become viable. Receivers of goods can potentially be effective initiators of a UCC, due to their buying power. The purpose of this research is to learn how receiver-led consolidation initiatives develop. We use qualitative data on four receiver-led UCCs in The Netherlands to understand the success factors and challenges in various stages of development. Our research shows that receivers can help during the start-up stage of a UCC, when they have a large volume of goods, can convince internal stakeholders, and are willing to pay or can make suppliers pay. However, receiver-led UCCs still face challenges related to growth in the later stages and require continuous effort to attract volume.
DOCUMENT
Urban freight transport is frequently censured for its unsustainable impacts. Although our current urbanized civilization requires an efficient freight transport system in order to sustain it, the common perception is that urban freight transport has negative impacts on all sustainability issues: social, economic and environmental (also known as the triple P: people, profi t and planet). Urban freight transport, or urban goods movement, is identifi ed as having the following unsustainable eff ects on: people, such as the consequences of traffi c accidents, noise nuisance, visual intrusion, smell, vibration and the consequences of (local) emissions, such as NOx and PM10, on public health; profit, such as inefficiencies (especially for carriers) due to regulations and restrictions, congestion and reduced city accessibility; the planet, such as the contribution of transport to global pollutant emissions (CO2) and the consequences for global warming.
LINK