Introduction: Sensor-feedback systems can be used to support people after stroke during independent practice of gait. The main aim of the study was to describe the user-centred approach to (re)design the user interface of the sensor feedback system “Stappy” for people after stroke, and share the deliverables and key observations from this process. Methods: The user-centred approach was structured around four phases (the discovery, definition, development and delivery phase) which were fundamental to the design process. Fifteen participants with cognitive and/or physical limitations participated (10 women, 2/3 older than 65). Prototypes were evaluated in multiple test rounds, consisting of 2–7 individual test sessions. Results: Seven deliverables were created: a list of design requirements, a personae, a user flow, a low-, medium- and high-fidelity prototype and the character “Stappy”. The first six deliverables were necessary tools to design the user interface, whereas the character was a solution resulting from this design process. Key observations related to “readability and contrast of visual information”, “understanding and remembering information”, “physical limitations” were confirmed by and “empathy” was additionally derived from the design process. Conclusions: The study offers a structured methodology resulting in deliverables and key observations, which can be used to (re)design meaningful user interfaces for people after stroke. Additionally, the study provides a technique that may promote “empathy” through the creation of the character Stappy. The description may provide guidance for health care professionals, researchers or designers in future user interface design projects in which existing products are redesigned for people after stroke.
DOCUMENT
Deze handreiking is ontwikkeld voor designers en ontwikkelaars van AI-systemen, met als doel om te zorgen dat deze systemen voldoende uitlegbaar zijn. Voldoende betekent hier dat het voldoet aan de wettelijke eisen vanuit AI Act en AVG en dat gebruikers het systeem goed kunnen gebruiken. In deze handreiking leggen we ten eerste uit wat de eisen zijn die er wettelijk gelden voor uitlegbaarheid van AI-systemen. Deze zijn afkomstig uit de AVG en de AI-Act. Vervolgens leggen we uit hoe AI gebruikt wordt in de financiële sector en werken één probleem in detail uit. Voor dit probleem laten we vervolgens zien hoe de user interface aangepast kan worden om de AI uitlegbaar te maken. Deze ontwerpen dienen als prototypische voorbeelden die aangepast kunnen worden op nieuwe problemen. Deze handreiking is gebaseerd op uitlegbaarheid van AI-systemen voor de financiële sector. De adviezen kunnen echter ook gebruikt worden in andere sectoren.
MULTIFILE
Laurence Alpay, Harmen Bijwaard en Rob Doms hebben bijdrage geleverd aan dit boek. zie hoofdstuk 7. Blz. 159 In dit hoofdstuk bekijken we de betekenis van ‘de mens centraal’ bij de ontwikkeling van technologie voor gezondheidszorg en welzijnsbevordering. In de zorg- en welzijnssector zijn door de vergrijzing straks meer professionals nodig, maar deze zijn waarschijnlijk in onvoldoende mate beschikbaar vanwege budgettaire beperkingen en te weinig menskracht. Technologie kan hier een oplossing bieden door taken over te nemen of te vergemakkelijken.
DOCUMENT
Deze casestudie geeft inzicht in verschillende soorten kennis die kenmerkend zijn voor applied design research. Er wordt onderscheid gemaakt tussen kennis over de huidige situatie, over wenselijke alternatieven en over effectieve oplossingen om daar te komen. Ofwel, kennis hoe het is, kennis over hoe het kan zijn en kennis over hoe het zal zijn als we effectieve oplossingen toepassen. Elk van deze soorten kennis heeft andere kwaliteitscriteria.
DOCUMENT
Background: During the process of decision-making for long-term care, clients are often dependent on informal support and available information about quality ratings of care services. However, clients do not take ratings into account when considering preferred care, and need assistance to understand their preferences. A tool to elicit preferences for long-term care could be beneficial. Therefore, the aim of this qualitative descriptive study is to understand the user requirements and develop a web-based preference elicitation tool for clients in need of longterm care. Methods: We applied a user-centred design in which end-users influence the development of the tool. The included end-users were clients, relatives, and healthcare professionals. Data collection took place between November 2017 and March 2018 by means of meetings with the development team consisting of four users, walkthrough interviews with 21 individual users, video-audio recordings, field notes, and observations during the use of the tool. Data were collected during three phases of iteration: Look and feel, Navigation, and Content. A deductive and inductive content analysis approach was used for data analysis. Results: The layout was considered accessible and easy during the Look and feel phase, and users asked for neutral images. Users found navigation easy, and expressed the need for concise and shorter text blocks. Users reached consensus about the categories of preferences, wished to adjust the content with propositions about well-being, and discussed linguistic difficulties. Conclusion: By incorporating the requirements of end-users, the user-centred design proved to be useful in progressing from the prototype to the finalized tool ‘What matters to me’. This tool may assist the elicitation of client’s preferences in their search for long-term care.
DOCUMENT
Our study introduces an open general-purpose platform for the embodiment of conversational AI systems. Conversational User-interface Based Embodiment (CUBE) is designed to streamline the integration of embodied solutions into text-based dialog managers, providing flexibility for customization depending on the specific use case and application. CUBE is responsible for naturally interacting with users by listening, observing, and responding to them. A detailed account of the design and implementation of the solution is provided, as well as a thorough examination of how it can be integrated by developers and AI dialogue manager integrators. Through interviews with developers, insight was gained into the advantages of such systems. Additionally, key areas that require further research were identified in the current challenges in achieving natural interaction between the user and the embodiments. CUBE bridges some of the gaps by providing controls to further develop natural non-verbal communication.
LINK
This guide was developed for designers and developers of AI systems, with the goal of ensuring that these systems are sufficiently explainable. Sufficient here means that it meets the legal requirements from AI Act and GDPR and that users can use the system properly. Explainability of decisions is an important requirement in many systems and even an important principle for AI systems [HLEG19]. In many AI systems, explainability is not self-evident. AI researchers expect that the challenge of making AI explainable will only increase. For one thing, this comes from the applications: AI will be used more and more often, for larger and more sensitive decisions. On the other hand, organizations are making better and better models, for example, by using more different inputs. With more complex AI models, it is often less clear how a decision was made. Organizations that will deploy AI must take into account users' need for explanations. Systems that use AI should be designed to provide the user with appropriate explanations. In this guide, we first explain the legal requirements for explainability of AI systems. These come from the GDPR and the AI Act. Next, we explain how AI is used in the financial sector and elaborate on one problem in detail. For this problem, we then show how the user interface can be modified to make the AI explainable. These designs serve as prototypical examples that can be adapted to new problems. This guidance is based on explainability of AI systems for the financial sector. However, the advice can also be used in other sectors.
DOCUMENT
In order to empower more people to become more selfreliant in society, interactive products and services should better match the skills and values of diverse user groups. In inclusive design, relevant end-user groups are involved early on and throughout the design and development process, leading to a better user experience. However, for IT businesses not operating in the academic domain, getting access to appropriate user research methods is difficult. This paper describes the design and prototype development of the Include Toolbox, in close cooperation with practitioners of small to medium sized enterprises (SMEs) in IT. It consists of an interactive app paired with a book. The app helps to find suitable research methods for diverse user groups such as older people, people with low literacy, and children. The book offers background information on the advantages of inclusive design, information on different user groups, and best practices shared by other companies.
DOCUMENT
Purpose: The purposes of this study were, first, to (re)design the user-interface of the activity tracker known as the MOX with the help of input from elderly individuals living independently and, second, to assess the use of and experiences with the adapted Measure It Super Simple (MISS) activity tracker in daily life. Methods: The double diamond method, which was used to (re)design the user-interface, consists of four phases: discover, define, develop, and deliver. As a departure point, this study used a list of general design requirements that facilitate the development of technology for the elderly. Usage and experiences were assessed through interviews after elderly individuals had used the activity tracker for 2 weeks. Results: In co-creation with thirty-five elderly individuals (65 to 89-years-old) the design, feedback system, and application were further developed into a user-friendly interface: the Measure It Super Simple (MISS) activity. Twenty-eight elderly individuals (65 to 78-years-old) reported that they found the MISS activity easy to use, needed limited help when setting the tracker up, and required limited assistance when using it during their daily lives. Conclusions: This study offers a generic structured methodology and a list of design requirements to adapt the interface of an existing activity tracker consistent with the skills and needs of the elderly. The MISS activity seemed to be successfully (re)designed, like the elderly who participated in this pilot study reported that anyone should be able to use it.
DOCUMENT
Het lectoraat Co-Design van Hogeschool Utrecht doet met een systemisch-inclusieve ontwerpende aanpak praktijkgericht onderzoek, om complexe maatschappelijke vraagstukken te helpen oplossen. Binnen die onderzoeken stellen we vragen over het ontwerpproces en de mensen die daarbij betrokken zijn. Hoe kun je goed co-designen in de weerbarstige werkelijkheid? Wat kan helpen in die ontwerpende aanpak? Hoe kunnen mensen die niet zijn opgeleid als ontwerpers volwaardig meedoen in het ontwerpproces, en wat hebben zij daarvoor nodig aan ontwerpend vermogen? De kennis over ontwerpend vermogen die we de afgelopen vier jaar hebben opgedaan, delen we in dit boekje. We hebben dat proces getekend en beschreven als een reisverhaal van Co, die ons meeneemt op een boot over een rivier, door stroomversnellingen en langs landschappen. Met bijdragen van: Marry Bassa, Anita Cremers, Tanja Enninga, Anita van Essen, Christa van Gessel, Berit Godfroij, Joep Kuijper, Remko van der Lugt, Caroline Maessen, Lenny van Onselen, Dirk Ploos van Amstel, Karlijn van Ramshorst, Carolijn Schrijver, Fenne Verhoeven, Danielle Vossebeld, Rosa de Vries
DOCUMENT