Purpose – In many organizations, a major part of the daily activities is perceived as concentrated work (53% in this study). Hence, a lack of privacy at the workplace may be considered as a serious environmental stressor. Activity-based work environments usually provide non-assigned private rooms, to be used on an as-need basis. Is this an effective stress management solution?Design/Methodology – Repeated measurements were collected, using a mobile application. Respondents provided data about their activities, the workplaces they used, and the degree of job strain they experienced. They also filled out a questionnaire regarding psychological and job characteristics.Results – A total of 3480 measurements was provided by 114 respondents, working at a Dutch public service organisation. The availability of private rooms did not seem to provide an effective stress management solution. Only 17% of the concentrated work was indeed performed in these rooms. When other types of workplaces were used, this caused (strong) dissatisfaction in 40% of the occasions. This dissatisfaction correlated with individual differences regarding need for privacy (p = .026).Limitations – Because only one specific organization and work environment is studied, further research is needed to test the generalizability of our findings.Research/Practical Implications – When performing concentrated work, people often choose not to use a private room, despite their dissatisfaction. Further research should focus on explaining and possibly influencing this behaviour.Originality/Value – Repeatedly measuring activity type together with workplace type and workplace satisfaction, provides a solid basis to analyse behavioural patterns and environmental stressors within activity-based work environments.
DOCUMENT
Dit onderzoek wordt uitgevoerd binnen de onderzoekslijn Studentenwelzijn van het lectoraat Studiesucces. Onderzoek op het gebied van studentenwelzijn in Nederland is nog beperkt. Een van de doelen van de onderzoekslijn is daarom een bijdrage te leveren aan (praktijkgerichte) kennis over het welzijn van studenten. Dit onderzoek heeft als doel daar aan bij te dragen door 1) de stresservaring van studenten binnen Hogeschool Inholland te onderzoeken, 2) in kaart te brengen wat studenten helpt om met stress om te gaan, en 3) te onderzoeken wanneer studenten zich bevlogen voelen. Tevens is dit onderzoek een verkenning van de variabelen van het Student Wellbeing Model. De onderzoeksuitkomsten dienen aanknopingspunten te bieden voor vervolgonderzoek naar het welzijn van studenten in relatie tot studiesucces. Ten slotte, de inzichten die verkregen worden dienen uiteindelijk bij te dragen aan het tegengaan van een hoge mate van stress (en andere gerelateerde psychische klachten) bij studenten en aan het bevorderen van het welzijn van studenten.
DOCUMENT
Background: The emphasis on impact factors and the quantity of publications intensifies competition between researchers. This competition was traditionally considered an incentive to produce high-quality work, but there are unwanted side-effects of this competition like publication pressure. To measure the effect of publication pressure on researchers, the Publication Pressure Questionnaire (PPQ) was developed. Upon using the PPQ, some issues came to light that motivated a revision.Method: We constructed two new subscales based on work stress models using the facet method. We administered the revised PPQ (PPQr) to a convenience sample together with the Maslach Burnout Inventory (MBI) and the Work Design Questionnaire (WDQ). To assess which items best measured publication pressure, we carried out a principal component analysis (PCA). Reliability was sufficient when Cronbach's alpha > 0.7. Finally, we administered the PPQr in a larger, independent sample of researchers to check the reliability of the revised version.Results: Three components were identified as 'stress', 'attitude', and 'resources'. We selected 3 × 6 = 18 items with high loadings in the three-component solution. Based on the convenience sample, Cronbach's alphas were 0.83 for stress, 0.80 for attitude, and 0.76 for resources. We checked the validity of the PPQr by inspecting the correlations with the MBI and the WDQ. Stress correlated 0.62 with MBI's emotional exhaustion. Resources correlated 0.50 with relevant WDQ subscales. To assess the internal structure of the PPQr in the independent reliability sample, we conducted the principal component analysis. The three-component solution explains 50% of the variance. Cronbach's alphas were 0.80, 0.78, and 0.75 for stress, attitude, and resources, respectively.Conclusion: We conclude that the PPQr is a valid and reliable instrument to measure publication pressure in academic researchers from all disciplinary fields. The PPQr strongly relates to burnout and could also be beneficial for policy makers and research institutions to assess the degree of publication pressure in their institute.
DOCUMENT
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Motivatie Het versterken van de samenwerking tussen relevante lectoraten door het ontwikkelen van een multidisciplinaire onderzoeksagenda op het terrein van Arbeid in de brede zin van het woord. Hierdoor kan de thematiek rondom toegang tot en behoud van arbeid vanuit meerdere kanten worden aangevlogen én kan focus en massa worden gecreëerd voor onderzoeksprogrammering en –funding. Daardoor kunnen we als lectoraten een belangrijke rol te spelen bij vraagstukken die betrekking hebben op het duurzaam (weer) aan het werk gaan én duurzaam aan het werk blijven. Achtergrond Om als individu zelfstandig en volwaardig te kunnen deelnemen aan onze participatiemaatschappij, is het hebben van werk cruciaal. Werk is echter voor mensen met minder of onvoldoende arbeids-, persoonlijk-, sociaal-, en cultureel kapitaal en/of toegang tot hulpbronnen steeds minder vanzelfsprekend. Naast traditioneel kwetsbare groepen – zoals laagopgeleiden, mensen met een chronische aandoening en migranten - zijn er nieuwe categorieën, waaronder veel middelbaar en hoog opgeleiden, voor wie het lastig is/wordt structureel betaald werk te vinden. De oorzaak ligt voornamelijk bij de toenemende digitalisering en robotisering in combinatie met de flexibilisering van de arbeidsmarkt. Ook werk op academisch niveau, dat gebaseerd is op regels, bijvoorbeeld accountancy en rechtspraak, zal steeds vaker (deels) geautomatiseerd kunnen worden (Est et al. 2015, Went et al. 2015). Anderzijds zijn er sectoren, zoals techniek en ICT, die een steeds grotere behoefte hebben aan hoogopgeleid personeel en waar het lastig is om voldoende gekwalificeerde mensen te krijgen. Tot slot zien we in alle sectoren een toename van stress- en burn-out klachten, die deels gerelateerd zijn aan traditionele, functioneel ingerichte organisaties. Het bovenstaande biedt geen rooskleurig beeld voor grote groepen in de samenleving en vanuit een breed Platform Arbeid willen we de thema’s op het terrein van arbeid vanuit meerdere perspectieven benaderen en in samenhang beschouwen.
Production processes can be made ‘smarter’ by exploiting the data streams that are generated by the machines that are used in production. In particular these data streams can be mined to build a model of the production process as it was really executed – as opposed to how it was envisioned. This model can subsequently be analyzed and stress-tested to explore possible causes of production prob-lems and to analyze what-if scenarios, without disrupting the production process itself. It has been shown that such models can successfully be used to diagnose possible causes of production problems, including scrap products and machine defects. Ideally, they can even be used to model and analyze production processes that have not been implemented yet, based on data from existing production pro-cesses and techniques from artificial intelligence that can predict how the new process is likely to be-have in practice in terms of data that its machines generate. This is especially important in mass cus-tomization processes, where the process to create each product may be unique, and can only feasibly be tested using model- and data-driven techniques like the one proposed in this project. Against this background, the goal of this project is to develop a method and toolkit for mining, mod-elling and analyzing production processes, using the time series data that is generated by machines, to: (i) analyze the performance of an existing production process; (ii) diagnose causes of production prob-lems; and (iii) certify that a new – not yet implemented – production process leads to high-quality products. The method is developed by researching and combining techniques from the area of Artificial Intelli-gence with techniques from Operations Research. In particular, it uses: process mining to relate time series data to production processes; queueing networks to determine likely paths through the produc-tion processes and detect anomalies that may be the cause of production problems; and generative adversarial networks to generate likely future production scenarios and sample scenarios of production problems for diagnostic purposes. The techniques will be evaluated and adapted in implementations at the partners from industry, using a design science approach. In particular, implementations of the method are made for: explaining production problems; explaining machine defects; and certifying the correct operation of new production processes.