This paper delves into the zero-emission city logistics readiness of businesses located in the earmarked Dutch inner cities, which are gearing up towards decreasing the emissions attributable to urban logistics activities. Emission reduction is to be achieved by rolling out mandated zero-emission zones which are to be implemented in 30-40 Dutch cities from the 1st January 2025, with the dates set and municipalities planning towards the banning of diesel-fuelled commercial vehicles. This research seeks to determine the extent of zero-emission operational maturity by use of the zero-emission maturity model by examining the four biggest cities in the southern Dutch Province of Noord Brabant. The research shows a low level of awareness among companies in the cities of Eindhoven, Breda, 's-Hertogenbosch, and Tilburg and calls for better methods of information dissemination, especially among the small to medium businesses who don't consider city logistics as their core business.
LINK
With the approach of the zero emission zone implementation in 30-40 cities mandated by the Dutch Klimaatakkord, comes the need to determine whether the SMEs located within these zones are aware of the coming changes and if they are, how far they have come in their preparation. This paper delves into the development of the zero emission city logistics maturity model tool which is used to indicate the progress of these small to medium enterprises in light of reaching fully zero emission city logistics operations. The paper starts off with a review of existing maturity models which forms the baseline for the zero emission city logistics maturity model in rubric form. A QuickScan analysis is developed in order to facilitate data collection by students who then approach businesses and use the QuickScan results to benchmark the businesses progress against other businesses. This paper then concludes with the preliminary results from the initial QuickScans performed by HBO level students.
DOCUMENT
DOCUMENT
This paper examines how the transition management approach for sustainability transitions can be applied to the case of how Rotterdam established a zero-emission zone (ZEZ) for city logistics, aiming to stimulate the adoption of electric freight vehicles, enhance logistics efficiency and improve liveability. The study highlights the challenges and strategies involved in transitioning to a sustainable city logistics system. Through a case study methodology, the paper explores the development and implementation of Rotterdam's ZEZ, emphasising the importance of stakeholder collaboration, strategic planning, and continuous monitoring. The findings provide valuable insights into the practical application of transition management theory in city logistics, offering best practices for other cities aiming to achieve similar sustainability goals.
DOCUMENT
Limited data is available on the size of urban goods movement and its impact on numerous aspects with respect to livability such as emissions and spatial impact. The latter becomes more important in densifying cities. This makes it challenging to implement effective measures that aim to reduce the negative impact of urban good movement and to monitor their impact. Furthermore, urban goods movement is diverse and because of this a tailored approach is required to take effective measures. Minimizing the negative impact of a heavy truck in construction logistics requires a different approach than a parcel delivery van. Partly due to a lack of accurate data, this diversity is often not considered when taking measures. This study describes an approach how to use available data on urban traffic, and how to enrich these with other sources, which is used to gain insight into the decomposition (number of trips and kilometers per segment and vehicle type). The usefulness of having this insight is shown for different applications by two case studies: one to estimate the effect of a zero-emission zone in the city of Utrecht and another to estimate the logistics requirements in a car-free area development.
MULTIFILE
Uitdagingen en toekomstperspectief voor het mkb met een bestelwagen.Door toenemende mobiliteit van mensen en goederen staat in stedelijke gebieden de leefbaarheid onder druk. Maatregelen als zero-emissiezones moeten bijdragen aan een betere leefomgeving, maar voor veel ondernemers leidt dit beleid tot zorgen over de praktische uitvoerbaarheid en de eigen bedrijfsvoering en -financiën. Hoe kan het mkb zijn mobiliteitsbehoefte toekomstbestendig maken?
DOCUMENT
The increasing rate of urbanization along with its socio-environmental impact are major global challenges. Therefore, there is a need to assess the boundaries to growth for the future development of cities by the inclusion of the assessment of the environmental carrying capacity (ECC) into spatial management. The purpose is to assess the resource dependence of a given entity. ECC is usually assessed based on indicators such as the ecological footprint (EF) and biocapacity (BC). EF is a measure of the biologically productive areas demanded by human consumption and waste production. Such areas include the space needed for regenerating food and fibers as well as sequestering the generated pollution, particularly CO2 from the combustion of fossil fuels. BC reflects the biological regeneration potential of a given area to regenerate resources as well to absorb waste. The city level EF assessment has been applied to urban zones across the world, however, there is a noticeable lack of urban EF assessments in Central Eastern Europe. Therefore, the current research is a first estimate of the EF and BC for the city of Wrocław, Poland. This study estimates the Ecological Footprint of Food (EFF) through both a top-down assessment and a hybrid top-down/bottom-up assessment. Thus, this research verifies also if results from hybrid method could be comparable with top-down approach. The bottom-up component of the hybrid analysis calculated the carbon footprint of food using the life cycle assessment (LCA) method. The top-down result ofWrocław’s EFF were 1% greater than the hybrid EFF result, 0.974 and 0.963 gha per person respectively. The result indicated that the EFF exceeded the BC of the city of Wrocław 10-fold. Such assessment support efforts to increase resource efficiency and decrease the risk associated with resources—including food security. Therefore, there is a need to verify if a city is able to satisfy the resource needs of its inhabitants while maintaining the natural capital on which they depend intact. Original article at: https://doi.org/10.3390/resources7030052 © 2018 by the authors. Licensee MDPI.
MULTIFILE
Publicatie naar aanleiding van de door Stadslab European Urban Design Laboratory georganiseerde Master Class met als thematiek het ontwerpen van een Innovative District voor de Poolse stad Lublin. De Master Class werd gevolgd door 8 internationale deelnemers en stond onder supervisie van Didier Rebois (Europan, Parijs), Marc Glaudemans (Fontys) en Juliette van der Meijden (Fontys)
DOCUMENT