This study provides a comprehensive analysis of the AI-related skills and roles needed to bridge the AI skills gap in Europe. Using a mixed-method research approach, this study investigated the most in-demand AI expertise areas and roles by surveying 409 organizations in Europe, analyzing 2,563 AI-related job advertisements, and conducting 24 focus group sessions with 145 industry and policy experts. The findings underscore the importance of both general technical skills in AI related to big data, machine learning and deep learning, cyber and data security, large language models as well as AI soft skills such as problemsolving and effective communication. This study sets the foundation for future research directions, emphasizing the importance of upskilling initiatives and the evolving nature of AI skills demand, contributing to an EU-wide strategy for future AI skills development.
MULTIFILE
poster voor de EuSoMII Annual Meeting in Pisa, Italië in oktober 2023. PURPOSE & LEARNING OBJECTIVE Artificial Intelligence (AI) technologies are gaining popularity for their ability to autonomously perform tasks and mimic human reasoning [1, 2]. Especially within the medical industry, the implementation of AI solutions has seen an increasing pace [3]. However, the field of radiology is not yet transformed with the promised value of AI, as knowledge on the effective use and implementation of AI is falling behind due to a number of causes: 1) Reactive/passive modes of learning are dominant 2) Existing developments are fragmented 3) Lack of expertise and differing perspectives 4) Lack of effective learning space Learning communities can help overcome these problems and address the complexities that come with human-technology configurations [4]. As the impact of a technology is dependent on its social management and implementation processes [5], our research question then becomes: How do we design, configure, and manage a Learning Community to maximize the impact of AI solutions in medicine?
DOCUMENT
De opkomst van Chat GPT laat zien hoe AI ingrijpt in ons dagelijks leven en het onderwijs. Maar AI is meer dan Chat GPT: van zoekmachines tot de gezichtsherkenning in je telefoon: data en algoritmes veranderen de levens van onze studenten en hun toekomstige werkveld. Wat betekent dit voor de opleidingen in het HBO waar voor wij werken? Voor de inspiratie-sessie De maatschappelijke impact van AI tijdens het HU Onderwijsfestival 2023 hebben wij onze collega’s uitgenodigd om samen met ons mee te denken over de recente AI-ontwikkelingen. We keken niet alleen naar de technologie, maar juist ook naar de maatschappelijke impact en wat de kansen en bedreigingen van AI zijn voor een open, rechtvaardige en duurzame samenleving. Het gesprek voerde we met onze collega’s (zowel docenten als medewerkers van de diensten) aan de hand van drie casussen met. De verzamelde resultaten en inzichten van deze gesprekken zijn samengebracht op een speciaal ontwikkelde poster voor de workshop (zie figuur 1). We hebben deze inzichten gebundeld en hieronder zijn ze te lezen.
DOCUMENT
De zorgsector wordt in toenemende mate geconfronteerd met uitdagingen als gevolg van groeiende vraag (o.a. door vergrijzing en complexiteit van zorg) en afnemend aanbod van zorgverleners (o.a. door personeelstekorten). Kunstmatige Intelligentie (AI) wordt als mogelijke oplossing gezien, maar wordt vaak vanuit een technologisch perspectief benaderd. Dit artikel kiest een mensgerichte benadering en bestudeert hoe zorgmedewerkers het werken met AI ervaren. Dit is belangrijk omdat zij uiteindelijk met deze applicaties moeten werken om de uitdagingen in de zorg het hoofd te bieden. Op basis van 21 semigestructureerde interviews met zorgmedewerkers die AI hebben gebruikt, beschrijven we de werkervaringen met AI. Met behulp van het AMO-raamwerk - wat staat voor abilities, motivation en opportunities - laten we zien dat AI een impact heeft op het werk van zorgmedewerkers. Het gebruik van AI vereist nieuwe competenties en de overtuiging dat AI de zorg kan verbeteren. Daarbij is er een noodzaak voor voldoende beschikbaarheid van training en ondersteuning. Tenslotte bediscussiëren we de implicaties voor theorie en geven we aanbevelingen voor HR-professionals.
MULTIFILE
As artificial intelligence (AI) reshapes hiring, organizations increasingly rely on AI-enhanced selection methods such as chatbot-led interviews and algorithmic resume screening. While AI offers efficiency and scalability, concerns persist regarding fairness, transparency, and trust. This qualitative study applies the Artificially Intelligent Device Use Acceptance (AIDUA) model to examine how job applicants perceive and respond to AI-driven hiring. Drawing on semi-structured interviews with 15 professionals, the study explores how social influence, anthropomorphism, and performance expectancy shape applicant acceptance, while concerns about transparency and fairness emerge as key barriers. Participants expressed a strong preference for hybrid AI-human hiring models, emphasizing the importance of explainability and human oversight. The study refines the AIDUA model in the recruitment context and offers practical recommendations for organizations seeking to implement AI ethically and effectively in selection processes.
MULTIFILE
Introduction: Digital technologies , such as big AI and cloud computing are driving digital transformation (DT) in organizations. The World Economic Forum ( reports that over 75% of organizations plan to adopt these technologies within five years, leading to a skills disruption as employees lack the necessary skills for DT. HRM departments are responsible for preparing their workforce for DT through reand upskilling initiatives (Ivaldi et al., 2022; Vereycken et al., To adapt HRM’s strategic talent management for tailored re and upskilling, insight is needed in workforce DT skills mastery. The objective of this study is to develop a validated instrument for measuring workforce DT skills mastery, building upon the Digital Transformations Skills Framework ( (Bouwmans et al., 2022, 2024). The instrument is a self assessment tool, allowing individuals to evaluate their proficiency across various skill dimensions.
DOCUMENT
The increasing use of AI in industry and society not only expects but demands that we build human-centred competencies into our AI education programmes. The computing education community needs to adapt, and while the adoption of standalone ethics modules into AI programmes or the inclusion of ethical content into traditional applied AI modules is progressing, it is not enough. To foster student competencies to create AI innovations that respect and support the protection of individual rights and society, a novel ground-up approach is needed. This panel presents on one such approach, the development of a Human-Centred AI Masters (HCAIM) as well as the insights and lessons learned from the process. In particular, we discuss the design decisions that have led to the multi-institutional master’s programme. Moreover, this panel allows for discussion on pedagogical and methodological approaches, content knowledge areas and the delivery of such a novel programme, along with challenges faced, to inform and learn from other educators that are considering developing such programmes.
DOCUMENT
Recently, the job market for Artificial Intelligence (AI) engineers has exploded. Since the role of AI engineer is relatively new, limited research has been done on the requirements as set by the industry. Moreover, the definition of an AI engineer is less established than for a data scientist or a software engineer. In this study we explore, based on job ads, the requirements from the job market for the position of AI engineer in The Netherlands. We retrieved job ad data between April 2018 and April 2021 from a large job ad database, Jobfeed from TextKernel. The job ads were selected with a process similar to the selection of primary studies in a literature review. We characterize the 367 resulting job ads based on meta-data such as publication date, industry/sector, educational background and job titles. To answer our research questions we have further coded 125 job ads manually. The job tasks of AI engineers are concentrated in five categories: business understanding, data engineering, modeling, software development and operations engineering. Companies ask for AI engineers with different profiles: 1) data science engineer with focus on modeling, 2) AI software engineer with focus on software development , 3) generalist AI engineer with focus on both models and software. Furthermore, we present the tools and technologies mentioned in the selected job ads, and the soft skills. Our research helps to understand the expectations companies have for professionals building AI-enabled systems. Understanding these expectations is crucial both for prospective AI engineers and educational institutions in charge of training those prospective engineers. Our research also helps to better define the profession of AI engineering. We do this by proposing an extended AI engineering life-cycle that includes a business understanding phase.
LINK
In my previous post on AI engineering I defined the concepts involved in this new discipline and explained that with the current state of the practice, AI engineers could also be named machine learning (ML) engineers. In this post I would like to 1) define our view on the profession of applied AI engineer and 2) present the toolbox of an AI engineer with tools, methods and techniques to defy the challenges AI engineers typically face. I end this post with a short overview of related work and future directions. Attached to it is an extensive list of references and additional reading material.
LINK
Purpose: This paper aims to present the findings from a European study on the digital skills gaps in tourism and hospitality companies. Design/methodology/approach: Mixed methods research was adopted. The sample includes 1,668 respondents (1,404 survey respondents and 264 interviewees) in 5 tourism sectors (accommodation establishments, tour operators and travel agents, food and beverage, visitor attractions and destination management organisations) in 8 European countries (UK, Italy, Ireland, Spain, Hungary, Germany, the Netherlands and Bulgaria). Findings: The most important future digital skills include online marketing and communication skills, social media skills, MS Office skills, operating systems use skills and skills to monitor online reviews. The largest gaps between the current and the future skill levels were identified for artificial intelligence and robotics skills and augmented reality and virtual reality skills, but these skills, together with computer programming skills, were considered also as the least important digital skills. Three clusters were identified on the basis of their reported gaps between the current level and the future needs of digital skills. The country of registration, sector and size shape respondents’ answers regarding the current and future skills levels and the skills gap between them. Originality/value: The paper discusses the digital skills gap of tourism and hospitality employees and identifies the most important digital skills they would need in the future.
MULTIFILE