Author supplied: Teaching software architecture (SA) in a bachelor computer science curriculum can be challenging, as the concepts are on a high abstraction level and not easy to grasp for students. Good techniques and tools that help with addressing the challenging SA aspects in a didactically responsible way are needed. In this tool demo we show how we used the software architecture compliance checking tool HUSACCT for addressing various concepts of SA in our courses on software architecture. The students were introduced to architectural reconstruction and architecture compliance checking, which helped them to gain important insights in aspects such as the relation between architectural models and code and the specification of dependency relations between architecture elements as concrete rules.
DOCUMENT
Author Supplied: In the last decades, architecture has emerged as a discipline in the domain of Information Technology (IT). A well-accepted definition of architecture is from ISO/IEC 42010: "The fundamental organization of a system, embodied in its components, their relationships to each other and the environment, and the principles governing its design and evolution." Currently, many levels and types of architecture in the domain of IT have been defined. We have scoped our work to two types of architecture: enterprise architecture and software architecture. IT architecture work is demanding and challenging and includes, inter alia, identifying architectural significant requirements (functional and non-functional), designing and selecting solutions for these requirements, and ensuring that the solutions are implemented according to the architectural design. To reflect on the quality of architecture work, we have taken ISO/IEC 8402 as a starting point. It defines quality as "the totality of characteristics of an entity that bear on its ability to satisfy stated requirements". We consider architecture work to be of high quality, when it is effective; when it answers stated requirements. Although IT Architecture has been introduced in many organizations, the elaboration does not always proceed without problems. In the domain of enterprise architecture, most practices are still in the early stages of maturity with, for example, low scores on the focus areas ‘Development of architecture’ and ‘Monitoring’ (of the implementation activities). In the domain of software architecture, problems of the same kind are observed. For instance, architecture designs are frequently poor and incomplete, while architecture compliance checking is performed in practice on a limited scale only. With our work, we intend to contribute to the advancement of architecture in the domain of IT and the effectiveness of architecture work by means of the development and improvement of supporting instruments and tools. In line with this intention, the main research question of this thesis is: How can the effectiveness of IT architecture work be evaluated and improved?
DOCUMENT
Enterprise Architecture has been developed in order to optimize the alignment between business needs and the (rapidly changing) possibilities of information technology. But do organizations indeed benefit from the application of Enterprise Architecture according to those who are in any way involved in architecture? To answer this question, a model has been developed (the Enterprise Architecture Value Framework) to organize the benefits of Enterprise Architecture. Based on this model, a survey has been conducted among the various types of stakeholders of Enterprise Architecture, such as architects, project managers, developers and business or IT managers. In the survey the respondents were asked to what extent they perceive various benefits of Enterprise Architecture in their organization. The results of this survey (with 287 fully completed responses) are analyzed and presented in this paper. In all categories of the framework benefits are perceived, though to different extent. Very few benefits are perceived in relation to the external orientation of the organization. Few statistically significant correlations were found in relation to the background of the respondents: the overall view on benefits of Enterprise Architecture appeared independent of the role of the respondents, the economic sector and the number of years of experience with architecture.
DOCUMENT
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
De markt vraagt om steeds meer productvariëteit. Veel bedrijven realiseren productvariëteit nu met veel klant-specifiek engineeringswerk (Engineer-to-Order/EtO). Dit zet druk op alle afdelingen in het bedrijf zoals sales, engineering, productie en service. Een uitdagende manier voor deze bedrijven, om beter met het spanningsveld tussen externe en interne eisen om te gaan, is het ontwikkelen van meer configureerbare producten (lego principe}. Hiervoor is een modulaire opbouw van het product nodig waarin verschillende productonderdelen gestandaardiseerd zijn en gebruikt kunnen worden in verschillende eindproducten. Zo kan, met minder engineeringsactiviteiten, een product geconfigureerd worden (Configure-to-Order/CtO) en de klant productvariëteit worden geboden zonder alle interne druk. Voor diverse bedrijven vormen ook de mogelijkheden van Industry 4.0 en sustainabilty ambities belangrijke drivers in hun streven naar meer CtO. Het implementeren van CtO is echter niet eenvoudig. Het vraagt om aanzienlijke capaciteit, kennis en kunde op het gebied van productontwikkeling, procesontwikkeling en het veranderproces. Betrokkenheid van medewerkers uit alle belangrijke afdelingen (verkoop, engineering, productie, service etc.) is een vereiste. Mkb-bedrijven worstelen hiermee en hebben behoefte aan goede tools en technieken, zowel inhoudelijk, over de ontwikkeling van de productarchitectuur en de impact hiervan op de bedrijfsprocessen, als veranderkundig, hoe deze transitie tot stand te brengen. In dit Sia RAAK-mkb onderzoek willen wij samen met productie mkb-bedrijven, kennisinstellingen en brancheorganisaties een integrale aanpak ontwikkelen om CtO op een goede manier te implementeren. De deelnemende mkb-bedrijven hebben de duidelijke wens om dit de komende jaren te doen. Voor de specifieke casussen zullen met casestudies en interventieonderzoek aanpakken ontwikkeld worden. Studentprojecten zullen ondersteuning geven aan de verschillende interventies. Vervolgens zal systematisch case-vergelijkend onderzoek worden uitgevoerd om inzicht te krijgen in wat in welke situatie werkt. Op basis van het case-vergelijkend onderzoek worden tools en technieken ontwikkeld die enerzijds generiek zijn en anderzijds kunnen worden aangepast aan specifieke bedrijfssituaties.