This chapter provides insights into the complex and adaptive nature of systems and illustrates key characteristics of such systems. These contribute to an understanding of the challenges in health promotion and imply a need for more context-specific research to evaluate the health promotion interventions. CARA can address this need as it can be used to evaluate and support change in complex adaptive systems. To support and inspire other health promotion researchers who want to adopt CARA as their research approach, we have discussed our experiences and provided some guiding principles. Overall, complexity thinking can help to understand the challenges in health promotion, whereby CARA provides a possible strategy for health promotion researchers when dealing with the challenges of evaluating health promotion interventions in complex adaptive systems.
LINK
Over the past few years, there has been an explosion of data science as a profession and an academic field. The increasing impact and societal relevance of data science is accompanied by important questions that reflect this development: how can data science become more responsible and accountable while also responding to key challenges such as bias, fairness, and transparency in a rigorous and systematic manner? This Patterns special collection has brought together research and perspective from academia, the public and the private sector, showcasing original research articles and perspectives pertaining to responsible and accountable data science.
MULTIFILE
Background:Following the onset of the COVID-19 pandemic, telerehabilitation (TR) has been expanding to address the challenges and risks of in-person delivery. It is likely that a level of TR delivery will continue after the pandemic because of its advantages, such as reducing geographical barriers to service. Many pandemic-related TR initiatives were put in place quickly. Therefore, we have little understanding of current TR delivery, barriers and facilitators, and how therapists anticipate integrating TR into current practice. Knowing this information will allow the incorporation of competencies specifically related to the use and provision of TR into professional profiles and entry-to-practice education, thereby promoting high-quality TR care.Objective:This study aimed to obtain a descriptive overview of current TR practice among rehabilitation therapists in Canada and the Netherlands and identify perceived barriers to and facilitators of practice.Methods:A web-based cross-sectional survey was conducted with occupational, physical, and respiratory therapists and dietitians in Canada (in French and English) and the Netherlands (in Dutch and English) between November 2021 and March 2022. Recruitment was conducted through advertisements on social media platforms and email invitations facilitated by regulatory and professional bodies. The survey included demographic and practice setting information; whether respondents delivered TR, and if so, components of delivery; confidence and satisfaction ratings with delivery; and barriers to and facilitators of use. TR satisfaction and uptake were measured using the Telehealth Usability Questionnaire and modified Technology Acceptance Model. Data were first summarized descriptively, and then, comparisons were conducted between professions.Results:Overall, 723 survey responses were received, mostly from Canada (n=666, 92.1%) and occupational therapists (n=434, 60%). Only 28.1% (203/723) reported receiving specific training in TR, with 1.2% (9/723) indicating that it was part of their professional education. Approximately 19.5% (139/712) reported not using TR at all, whereas most participants (366/712, 51.4%) had been using this approach for 1 to 2 years. Services delivered were primarily teleconsultation and teletreatment with individuals. Respondents offering TR were moderately satisfied with their service delivery and found it to be effective; 90.1% (498/553) indicated that they were likely to continue offering TR after the pandemic. Technology access, confidence, and setup were rated the highest as facilitators, whereas technology issues and the clinical need for physical contact were the most common barriers.Conclusions:Professional practice and experience with TR were similar in both countries, suggesting the potential for common strategic approaches. The high prevalence of current practice and strong indicators of TR uptake suggest that therapists are likely to continue TR delivery after the pandemic; however, most therapists (461/712, 64.7%) felt ill prepared for practice, and the need to target TR competencies during professional and postprofessional education is critical. Future studies should explore best practice for preparatory and continuing education.
DOCUMENT
The climate change and depletion of the world’s raw materials are commonly acknowledged as the biggest societal challenges. Decreasing the energy use and the related use of fossil fuels and fossil based materials is imperative for the future. Currently 40% of the total European energy consumption and about 45% of the CO2 emissions are related to building construction and utilization (EC, 2015). Almost half of this energy is embodied in materials. Developing sustainable materials to find replacement for traditional building materials is therefore an increasingly important issue. Mycelium biocomposites have a high potential to replace the traditional fossil based building materials. Mycelium is the ‘root network’ of mushrooms, which acts as a natural glue to bind biomass. Mycelium grows through the biomass, which functions simultaneously as a growth substrate and a biocomposite matrix. Different organic residual streams such as straw, sawdust or other agricultural waste can be used as substrate, therefore mycelium biocomposites are totally natural, non-toxic, biological materials which can be grown locally and can be composted after usage (Jones et al., 2018). In the “Building On Mycelium” project Avans University of Applied Sciences, HZ University of Applied Sciences, University of Utrecht and the industrial partners will investigate how the locally available organic waste streams can be used to produce mycelium biocomposites with properties, which make them suitable for the building industry. In this project the focus will be on studying the use of the biocomposite as raw materials for the manufacturing of furniture or interior panels (insulation or acoustic).
To decrease the environmental impact caused by the construction sector, biobased materials need to be further developed to allow better integration and acceptance in the market. Mycelium composites are innovative products, with intrinsic properties which rise the attention of architects, designers and industrial companies. Until now, research has focused on the mechanical properties of mycelium products. The aim has been improving their mechanical strength, to achieve wider application in the construction sector. Alongside this, to introduce mycelium composites to a wider market, the aesthetic experience of the public also needs to be considered. In the context of this proposal, it is argued that users of biobased products can shift their attitudes towards their surroundings by adjusting to the visual aesthetics within their environment or products they surround themselves with (Hekkert, 1997). This can be further attributed to colours which can be experienced as warm or cold, aggressive or inviting, leading to experiences that may include pleasure or displeasure indicating the future success of the bio based product. Mycelium composites can be used as building materials, but also as interior design materials, therefore visible to its user. It is to determine the appropriate methodologies to confer colour to mycelium composites that the companies Impershield and Dorable came together to form the consortium for the present project. The investigated ways are: 1. Through the preliminary colouring of fibres and their use as substrate for mycelium growth 2. The surface treatment of the final product. The Centre of Expertise BioBased Economy (CoEBBE) and the Centre of Applied Research for Art and Design (CARADT) will be guiding the research through their experience with mycelium composites. This project will lay the basis to enhance visual appearance of mycelium composites, with the utilization of natural pigments, natural paints and coatings.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations