Klotho knock-out mice are an important model for vascular calcification, which is associated with chronic kidney disease. In chronic kidney disease, serum magnesium inversely correlates with vascular calcification. Here we determine the effects of serum magnesium on aortic calcification in Klotho knock-out mice treated with a minimal or a high magnesium diet from birth. After eight weeks, serum biochemistry and aorta and bone tissues were studied. Protective effects of magnesium were characterized by RNA-sequencing of the aorta and micro-CT analysis was performed to study bone integrity. A high magnesium diet prevented vascular calcification and aortic gene expression of Runx2 and matrix Gla protein found in such mice on the minimal magnesium diet. Differential expression of inflammation and extracellular matrix remodeling genes accompanied the beneficial effects of magnesium on calcification. High dietary magnesium did not affect serum parathyroid hormone, 1,25-dihydroxyvitamin D3 or calcium. High magnesium intake prevented vascular calcification despite increased fibroblast growth factor-23 and phosphate concentration in the knock-out mice. Compared to mice on the minimal magnesium diet, the high magnesium diet reduced femoral bone mineral density by 20% and caused excessive osteoid formation indicating osteomalacia. Osteoclast activity was unaffected by the high magnesium diet. In Saos-2 osteoblasts, magnesium supplementation reduced mineralization independent of osteoblast function. Thus, high dietary magnesium prevents calcification in Klotho knock-out mice. These effects are potentially mediated by reduction of inflammatory and extracellular matrix remodeling pathways within the aorta. Hence magnesium treatment may be promising to prevent vascular calcification, but the risk for osteomalacia should be considered.
DOCUMENT
OBJECTIVE: Evaluate clinical outcome of early cyclic intravenous pamidronate treatment in children with moderate-to-severe osteogenesis imperfecta (OI), commenced before three years of age.METHODS: A retrospective review of 17 patients with moderate-to-severe OI. Development, anthropometry, fracture history, bone mineral density (BMD) and biochemistry were collected at baseline, 12 and 24 months.RESULTS: Four had OI type I, eleven had type III, one OI-FKBP10 type and one OI type V. Mean age at start of pamidronate was 14 ± 11 months. Pamidronate ranged from 6 to 12 mg/kg/year. No adverse reaction apart from fever and vomiting was noted. Long bone fracture decreased from a mean of 10.4/year to 1.2/year after 12 months and 1.4/year after 24 months (p = 0.02). Lumbar spine age- and height-matched BMD Z-scores increased (p < 0.005). Sixteen with vertebral compression fractures at baseline all showed improved vertebral shape (p < 0.001). Concavity index, likewise, improved (p < 0.005). Motor milestones compared to historical data show earlier attainment in rolling over, crawling, pulling to stand and walking independently but not sitting.CONCLUSION: Cyclic intravenous pamidronate, started under 3 years of age in children with moderate-to-severe OI, was well tolerated and associated with an increase in lumbar spine BMD, reduced fracture frequency, vertebral remodelling and attainment of motor milestones at an earlier age.
DOCUMENT
Boven titel staat vermeld: De symbiose van biologie en technologie. Zowel vanuit het Applied Science onderwijs als vanuit het werkveld kwam er meer vraag om biologische expertise toe te voegen aan het bestaande lectoraat Thin Films & Functional Materials.
DOCUMENT