Introduction: In the Netherlands, Diagnostic Reference Levels (DRLs) have not been based on a national survey as proposed by ICRP. Instead, local exposure data, expert judgment and the international scientific literature were used as sources. This study investigated whether the current DRLs are reasonable for Dutch radiological practice. Methods: A national project was set up, in which radiography students carried out dose measurements in hospitals supervised by medical physicists. The project ran from 2014 to 2017 and dose values were analysed for a trend over time. In the absence of such a trend, the joint yearly data sets were considered a single data set and were analysed together. In this way the national project mimicked a national survey. Results: For six out of eleven radiological procedures enough data was collected for further analysis. In the first step of the analysis no trend was found over time for any of these procedures. In the second step the joint analysis lead to suggestions for five new DRL values that are far below the current ones. The new DRLs are based on the 75 percentile values of the distributions of all dose data per procedure. Conclusion: The results show that the current DRLs are too high for five of the six procedures that have been analysed. For the other five procedures more data needs to be collected. Moreover, the mean weights of the patients are higher than expected. This introduces bias when these are not recorded and the mean weight is assumed to be 77 kg. Implications for practice: The current checking of doses for compliance with the DRLs needs to be changed. Both the procedure (regarding weights) and the values of the DRLs should be updated.
MULTIFILE
Abstract gepubliceerd in Elsevier: Introduction: Recent research has identified the issue of ‘dose creep’ in diagnostic radiography and claims it is due to the introduction of CR and DR technology. More recently radiographers have reported that they do not regularly manipulate exposure factors for different sized patients and rely on pre-set exposures. The aim of the study was to identify any variation in knowledge and radiographic practice across Europe when imaging the chest, abdomen and pelvis using digital imaging. Methods: A random selection of 50% of educational institutes (n ¼ 17) which were affiliated members of the European Federation of Radiographer Societies (EFRS) were contacted via their contact details supplied on the EFRS website. Each of these institutes identified appropriate radiographic staff in their clinical network to complete an online survey via SurveyMonkey. Data was collected on exposures used for 3 common x-ray examinations using CR/DR, range of equipment in use, staff educational training and awareness of DRL. Descriptive statistics were performed with the aid of Excel and SPSS version 21. Results: A response rate of 70% was achieved from the affiliated educational members of EFRS and a rate of 55% from the individual hospitals in 12 countries across Europe. Variation was identified in practice when imaging the chest, abdomen and pelvis using both CR and DR digital systems. There is wide variation in radiographer training/education across countries.
DOCUMENT
Diagnostic reference levels (DRLs) for medical x-ray procedures are being implemented currently in the Netherlands. By order of the Dutch Healthcare Inspectorate, a survey has been conducted among 20 Dutch hospitals to investigate the level of implementation of the Dutch DRLs in current radiological practice. It turns out that hospitals are either well underway in implementing the DRLs or have already done so. However, the DRLs have usually not yet been incorporated in the QAsystem of the department nor in the treatment protocols. It was shown that the amount of radiation used, as far as it was indicated by the hospitals, usually remains below the DRLs. A procedure for comparing dose levels to the DRLs has been prescribed but is not Always followed in practice. This is especially difficult in the case of children, as most general hospitals receive few children. Health Phys. 108(4):462–464; 2015
DOCUMENT
Het doel van het project is om inzicht te krijgen in praktische en commerciële haalbaarheid rondom de Aquabooster van het bedrijf Wabbi dat eigendom is van studentondernemer Faik Durmus. Het onderzoek waaruit de Aquabooster is ontstaan is gedaan door studenten van de opleiding Biologie en Medisch Laboratoriumonderzoek aan de Saxion Hogeschool. Daarmee borduurt dit project voort op praktijkgericht onderzoek vanuit een kennisinstelling. De Aquabooster is het enige product van het bedrijf Wabbi. De Aquabooster reinigt herbruikbare flessen (zoals de Dopper®) van consumenten met als doel de levensduur te verlengen en de afvalberg te verlagen. Hiermee hoopt Wabbi bij te dragen aan SDG12: ‘Responsible consumption and production’. De belangrijkste projectactiviteiten om het doel te realiseren omvatten: a. Het bouwen van meerdere prototypes; b. Validatie van de prototypes in relevante fieldlabs teneinde feedback uit de markt te krijgen; c. Onderzoek naar Intellectueel Eigendom; d. Schrijven van een businessplan. Deze activiteiten moeten er toe leiden dat er een beeld ontstaat over de potentie van Wabbi met haar Aquabooster. Het project duurt 9 maanden en het budget bedraagt conform begroting €40.000. De projectpartners zijn: Wabbi, Het Saxion Centrum voor Ondernemerschap (penvoerder), de lectoraten Mechatronica en Industrial Design en een partner ten aanzien van het onderzoek naar Intellectueel Eigendom (wordt nog gezocht). Aanvullend worden studenten ingezet om feedback uit de markt te krijgen en deelsystemen te ontwikkelen.