The capacity to deal with digital transformation is a valuable asset for established organizations, and employees play a crucial role in this process. This study contributes to the understanding of employees’ sensemaking of digital transformation in the tour operating industry. Using prior digital transformation research, construal-level theory (CLT), and dynamic change perspectives, our scholarly work focuses on the complexities of organizational change in a digital transformation context. Although employees generally support digital transformation, our findings show that their perceptions change over time across a range of specific challenges experienced during the employee change journey. Our findings stress the importance of adopting a social exchange lens in digital transformation knowledge as this represents deep structure change that might cause well-designed transformation processes to fail. Implications for hospitality and tourism management are discussed.
MULTIFILE
Introduction: Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. Aim: To examine how different modes of arm swing affect gait stability. Method: Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. Results: We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior–posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Discussion: Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Conclusion: Excessive arm swing significantly increases local dynamic stability of human gait.
OBJECTIVE: The aim of this study was to investigate whether dynamic balance, measured with the anterior component of the Star Excursion Balance Test (SEBT-ANT), is a risk factor for ankle injuries in physical education teacher education (PETE) students.DESIGN AND SETTING: A prospective monocentre study in first-year PETE students.PARTICIPANTS: A total of 196 subjects, of which 137 men (70%) and 59 women (30%).OUTCOME MEASURES: This study consisted of measures of the SEBT-ANT at baseline (September 2015) and an injury registration procedure during a follow-up period (September 2015-June 2016). The association between the SEBT-ANT score and subsequent ankle injury was analysed with generalised estimating equations analysis at the leg level.RESULTS: Men and women had an average SEBT-ANT score of, respectively, 65.1% and 67.7% of leg length. In 20 (15%) subjects, the first injured body site involved the ankle. Across all participants, a below average SEBT-ANT score was not associated with increased ankle injury odds (OR OR=2.43, 95% CI: 0.94 to 6.29, p=0.07). In men, a below average SEBT-ANT score indicated sevenfold increased odds for ankle injury (OR=7.06, 95% CI: 1.43 to 34.92, p=0.02). In women, this relationship was not significant (OR=0.72, 95% CI: 0.19 to 2.71, p=0.62).CONCLUSIONS: Below average normalised SEBT-ANT scores were associated with sevenfold likelihood for ankle injuries in men. In contrast, no relationship was found for the SEBT-ANT score and ankle injuries in woman. These results may provide directions for the implementation of screening tools, as part of an injury prevention programme, to identify male PETE students with an increased likelihood for ankle injuries.
Socio-economic pressures on coastal zones are on the rise worldwide, leaving increasingly less room for natural coastal change without affecting humans. The challenge is to find ways for social and natural systems to co-exist, co-develop and create synergies. The recent implementation of multi-functional, nature-based solutions (NBS) on the sandy Dutch coast seem to offer great potential in that respect. Surprisingly, the studies evaluating these innovative solutions paid little attention to how the social and natural systems interact in the NBS-modified coastal landscapes and if these interactions strengthen or weaken the primary functions of the NBS. It is not clear whether the objectives to improve coastal resilience and spatial quality will be met throughout the lifetime of the intervention. In the proposed project we will investigate the socio-bio-physical dynamics of anthropogenic sandy shores applying a Living Lab approach, documenting and analyzing interactions between evolving anthropogenic shores (Sand Motor and Hondsbossche Duinen, Fig.1) and people that use and manage these NBS-modified landscapes. Socio-bio-physical interactions will be investigated at various scales, and consequences for the long-term functionality of the NBS will be assessed, by coupling an agent-based social model and a cellular automata landscape model. By studying the behavior of the coupled system we aim to identify limits to, and optima in, multi-functionality of the NBS design, and will study how various stakeholders can influence the development of the NBS in desired directions with respect to primary NBS functions, including social and ecological goals. Together with consortium partners from public and private sectors we will co-create guidelines for management and maintenance of multifunctional NBS and design procedures and visualization tools for intervention design.