In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include functional magnetic resonance imaging (fMRI)-based functional and/or effective connectivity, and electroencephalography (EEG)/magnetoencephalography-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between the visual cortex and the rest of the brain. The results show that when alpha power increases, BOLD connectivity between the primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with the anterior/medial thalamus decreases and the ventral–medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. The decreased connectivity within the visual system may indicate an enhanced functional inhibition during a higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between the visual cortex and the other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long-range neural connectivity changes.
LINK
Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
LINK
The event-related potential (ERP) approach has provided a wealth of fine-grained information about the time course and the neural basis of cognitive processing events. However, in the 1980s and 1990s, an increasing number of researchers began to realize that an ERP only represents a certain part of the event-related electroencephalographic (EEG) signal. This chapter focuses on another aspect of event-related EEG activity: oscillatory EEG activity. There exists a meaningful relationship between oscillatory neuronal dynamics, on the one hand, and a wide range of cognitive processes, on the other hand. Given that the analysis of oscillatory dynamics extracts information from the EEG/magnetoencephalographic (EEG/MEG) signal that is largely lost with the traditional time-locked averaging of single trials used in the ERP approach, studying the dynamic oscillatory patterns in the EEG/MEG is at least a useful addition to the traditional ERP approach.
DOCUMENT
Work on animals indicates that BOLD is preferentially sensitive to local field potentials, and that it correlates most strongly with gamma band neuronal synchronization. Here we investigate how the BOLD signal in humans performing a cognitive task is related to neuronal synchronization across different frequency bands. We simultaneously recorded EEG and BOLD while subjects engaged in a visual attention task known to induce sustained changes in neuronal synchronization across a wide range of frequencies. Trial-by-trial BOLD fluctuations correlated positively with trial-by-trial fluctuations in high-EEG gamma power (60. -80 Hz) and negatively with alpha and beta power. Gamma power on the one hand, and alpha and beta power on the other hand, independently contributed to explaining BOLD variance. These results indicate that the BOLD-gamma coupling observed in animals can be extrapolated to humans performing a task and that neuronal dynamics underlying high- and low-frequency synchronization contribute independently to the BOLD signal.
LINK
We examined the neural correlates of facial attractiveness by presenting pictures of male or female faces (neutral expression) with low/intermediate/high attractiveness to 48 male or female participants while recording their electroencephalogram (EEG). Subjective attractiveness ratings were used to determine the 10% highest, 10% middlemost, and 10% lowest rated faces for each individual participant to allow for high contrast comparisons. These were then split into preferred and dispreferred gender categories. ERP components P1, N1, P2, N2, early posterior negativity (EPN), P300 and late positive potential (LPP) (up until 3000 ms post-stimulus), and the face specific N170 were analysed. A salience effect (attractive/unattractive > intermediate) in an early LPP interval (450–850 ms) and a long-lasting valence related effect (attractive > unattractive) in a late LPP interval (1000–3000 ms) were elicited by the preferred gender faces but not by the dispreferred gender faces. Multi-variate pattern analysis (MVPA)-classifications on whole-brain single-trial EEG patterns further confirmed these salience and valence effects. It is concluded that, facial attractiveness elicits neural responses that are indicative of valenced experiences, but only if these faces are considered relevant. These experiences take time to develop and last well beyond the interval that is commonly explored.
MULTIFILE
It is commonly assumed that TV commercials successfully influence affective tourism destination image by coupling positive emotions to a destination. In this study we record emotional responses to destination pictures before and after viewing a destination TV commercial from participants’ brains using electroencephalography (EEG). A control group of participants watched the same destination pictures, and an unrelated TV commercial. Emotion-related event-related potential (ERP) components, the P2 and LPP, were derived from the EEG. For the participants that watched the destination TV commercial, the P2 and the LPP were larger in response to destination pictures after compared to before having watched the TV commercial. This effect was not observed in the control group. In a behavioral version of the same experiment, we did not observe any effects in the self-report data. It is concluded that ERP methodology is a useful tool to complement the toolbox of tourism marketing researchers
LINK
We propose a novel deception detection system based on Rapid Serial Visual Presentation (RSVP). One motivation for the new method is to present stimuli on the fringe of awareness, such that it is more difficult for deceivers to confound the deception test using countermeasures. The proposed system is able to detect identity deception (by using the first names of participants) with a 100% hit rate (at an alpha level of 0.05). To achieve this, we extended the classic Event-Related Potential (ERP) techniques (such as peak-to-peak) by applying Randomisation, a form of Monte Carlo resampling, which we used to detect deception at an individual level. In order to make the deployment of the system simple and rapid, we utilised data from three electrodes only: Fz, Cz and Pz. We then combined data from the three electrodes using Fisher's method so that each participant was assigned a single p-value, which represents the combined probability that a specific participant was being deceptive. We also present subliminal salience search as a general method to determine what participants find salient by detecting breakthrough into conscious awareness using EEG.
DOCUMENT
Cultural tourism is regarded as a key contributor for economic growth in various destinations. While increasing awareness and interest of different cultures play a key role, technology has made information and interaction at these sites more accessible and engaging. An increasing amount of research is being conducted around the potential and implementation of AR and VR technology to enhance the visitor experience. However, limited theoretical knowledge has been developed on how these need to be designed to facilitate forming memorable experiences at cultural tourism sites. This study discusses elements affecting the visitor experience and discusses how AR and VR should be designed to contribute to enhancing the experience and making it memorable from a theoretical perspective. Further research recommendations are outlined that suggest the use of complementing research methodologies to better understand the nature of experiences in order to design AR and VR application more purpose-specifically.
DOCUMENT
Being able to classify experienced emotions by identifying distinct neural responses has tremendous value in both fundamental research (e.g. positive psychology, emotion regulation theory) and in applied settings (clinical, healthcare, commercial). We aimed to decode the neural representation of the experience of two discrete emotions: sadness and disgust, devoid of differences in valence and arousal. In a passive viewing paradigm, we showed emotion evoking images from the International Affective Picture System to participants while recording their EEG. We then selected a subset of those images that were distinct in evoking either sadness or disgust (20 for each), yet were indistinguishable on normative valence and arousal. Event-related potential analysis of 69 participants showed differential responses in the N1 and EPN components and a support-vector machine classifier was able to accurately classify (58%) whole-brain EEG patterns of sadness and disgust experiences. These results support and expand on earlier findings that discrete emotions do have differential neural responses that are not caused by differences in valence or arousal.
DOCUMENT