Decarbonisation of urban logistics is a pressing issue. About one third of the freight-related CO 2 emissions in the Netherlands relates to urban logistics, consisting of both vans and trucks. Although electrification is a feasible solution, delivery models that not only focus on reducing the carbon footprint, but also the spatial footprint are important. A one-to-one replacement of diesel vehicles with electric vehicles does not reduce urban logistics' spatial footprint in densifying cities nor the delivery vans' perceived nuisance. This paper examines the impact of alternative delivery models in the parcel- and home delivery segment in four future scenarios on CO 2 emissions, vehicle kilometres and number and type of vehicles used (2030). Analyses are based on data from three companies in a large metropolitan region in the Netherlands. The results show the impact of vehicles fleets electrification, transhipment in consolidation points and a network of pickup points. This study illustrates that developing alternative last mile networks can result in a decrease in vehicle (van) movements, and with that a serious decrease in emissions. The implications of the results on the carbon footprint, urban space usage and costs for companies are discussed.
LINK
Business-led approaches to accessing energy in development countries are becoming key factors to sustainable market development. Given the major challenges in this market, companies will blend commercial and donor-funded activities, while simultaneously finding innovative ways to bring renewable energy technologies beyond the energy grid. Collaborative approaches by companies and public actors focused on private sector development seem crucial at this stage to further upscale emerging business models in this market.
LINK
Electrification of residential areas is increasingly common. Major areas of development include promoting rooftop solar panels, electric vehicles and heat pumps. However, existing grid components may have insufficient capacity to support the resulting electricity flows. Battery energy storage (BES) can be used to prevent transformer overloading resulting from electrification. Ideally, BES should be sized and placed such that it can prevent overloading with a minimum amount of storage capacity, but it is unclear how load characteristics affect BES capacity requirements. This study investigated how load simultaneity affects the minimum BES capacity required to prevent transformer overloading, comparing a central with a decentral BES configuration. It was found that as simultaneity increases, decentral storage requires relatively less capacity than central storage. This is likely due to the reduced ability of central BES to share capacity between connections with higher simultaneity, and the ability of decentral BES to better reduce transportation losses.
To reach the European Green Deal by 2050, the target for the road transport sector is set at 30% less CO2 emissions by 2030. Given the fact that heavy-duty commercial vehicles throughout Europe are driven nowadays almost exclusively on fossil fuels it is obvious that transition towards reduced emission targets needs to happen seamlessly by hybridization of the existing fleet, with a continuously increasing share of Zero Emission vehicle units. At present, trailing units such as semitrailers do not possess any form of powertrain, being a missed opportunity. By introduction of electrically driven axles into these units the fuel consumption as well as amount of emissions may be reduced substantially while part of the propulsion forces is being supplied on emission-free basis. Furthermore, the electrification of trailing units enables partial recuperation of kinetic energy while braking. Nevertheless, a number of challenges still exist preventing swift integration of these vehicles to daily operation. One of the dominating ones is the intelligent control of the e-axle so it delivers right amount of propulsion/braking power at the right time without receiving detailed information from the towing vehicle (such as e.g. driver control, engine speed, engine torque, or brake pressure, …etc.). This is required mainly to ensure interoperability of e-Trailers in the fleets, which is a must in the logistics nowadays. Therefore the main mission of CHANGE is to generate a chain of knowledge in developing and implementing data driven AI-based applications enabling SMEs of the Dutch trailer industry to contribute to seamless energetic transition towards zero emission road freight transport. In specific, CHANGE will employ e-Trailers (trailers with electrically driven axle(s) enabling energy recuperation) connected to conventional hauling units as well as trailers for high volume and extreme payload as focal platforms (demonstrators) for deployment of these applications.
298 woorden: In the upcoming years the whole concept of mobility will radically change. Decentralization of energy generation, urbanization, digitalization of processes, electrification of vehicles and shared mobility are only some trends which have a strong influence on future mobility. Furthermore, due to the shift towards renewable energy production, the public and the private sector are required to develop new infrastructures, new policies as well as new business models. There are countless opportunities for innovative business models emerging. Companies in this field – such as charging solution provider, project management or consulting companies that are part of this project, Heliox and Over Morgen respectively – are challenged with countless possibilities and increasing complexity. How to overcome this problem? Academic research proposes a promising approach, namely the use of business model patterns for business model innovation. In short, these business model patterns are descriptions of proven practical solutions to common business model challenges. An example for a general pattern would be the business model pattern “Consumables”. It describes how to lock in a customer into an ecosystem by using a subsidized basic product and complement it with overpriced consumables. This pattern works really well and has been used by many companies (e.g. Senseo, HP, or Gillette). To support the business model innovation process of Heliox and Over Morgen as well as companies in the electric mobility space in general, we propose to systematically consolidate and develop business model patterns for the electric mobility sector and to create a database. Electric mobility patterns could not only foster creativity in the business model innovation process but also enhance collaboration in teams. By having a classified list of business model pattern for electric mobility, practitioners are equipped which a heuristic tool to create, extend and revise business models for the future.
Residential electricity distribution grid capacityis based on the typical peak load of a house and the loadsimultaneity factor. Historically, these values have remainedpredictable, but this is expected to change due to increasingelectric heating using heat pumps and rooftop solar panelelectricity generation. It is currently unclear how this increasein electrification will impact household peak load and loadsimultaneity, and hence the required grid capacity of residentialelectricity distribution grids. To gain better insight, transformerand household load measurements were taken in an all-electricneighborhood over a period of three years. These measurementswere analyzed to determine how heat pumps and solar panelswill alter peak load and load simultaneity and hence gridcapacity design parameters. Moreover, the potential for smartgrids to reduce peak loads and load simultaneity, and hencereduce required grid capacities, was examined.