The World Health Organization engages cities and communities all over the world in becoming age-friendly. There is a need for assessing the age-friendliness of cities and communities by means of a transparently constructed and validated tool which measures the construct as a whole. The aim of this study was to develop a questionnaire measuring age-friendliness, providing full transparency and reproducibility. The development and validation of the Age Friendly Cities and Communities Questionnaire (AFCCQ) followed the criteria of the COnsensus-based Standards for selection of health Measurement INstruments (COSMIN). Four phases were followed: (1) development of the conceptual model, themes and items; (2) initial (qualitative) validation; (3) psychometric validation, and (4) translating the instrument using the forward-backward translation method. This rigorous process of development and validation resulted in a valid, psychometrically sound, comprehensive 23-item questionnaire. This questionnaire can be used to measure older people’s experiences regarding the eight domains of the WHO Age-Friendly Cities model, and an additional financial domain. The AFCCQ allows practitioners and researchers to capture the age-friendliness of a city or community in a numerical fashion, which helps monitor the age-friendliness and the potential impact of policies or social programmes. The AFCCQ was created in Dutch and translated into British-English. CC-BY Original article: https://doi.org/10.3390/ijerph17186867 (This article belongs to the Special Issue Feature Papers "Age-Friendly Cities & Communities: State of the Art and Future Perspectives") https://www.dehaagsehogeschool.nl/onderzoek/lectoraten/details/urban-ageing#over-het-lectoraat Extra: Vragenlijst bijlage / Questionnaire attachement
MULTIFILE
The role of smart cities in order to improve older people’s quality of life, sustainability and opportunities, accessibility, mobility, and connectivity is increasing and acknowledged in public policy and private sector strategies in countries all over the world. Smart cities are one of the technological-driven initiatives that may help create an age-friendly city. Few research studies have analysed emerging countries in terms of their national strategies on smart or age-friendly cities. In this study, Romania which is predicted to become one of the most ageing countries in the European Union is used as a case study. Through document analysis, current initiatives at the local, regional, and national level addressing the issue of smart and age-friendly cities in Romania are investigated. In addition, a case study is presented to indicate possible ways of the smart cities initiatives to target and involve older adults. The role of different stakeholders is analysed in terms of whether initiatives are fragmentary or sustainable over time, and the importance of some key factors, such as private–public partnerships and transnational bodies. The results are discussed revealing the particularities of the smart cities initiatives in Romania in the time frame 2012–2020, which to date, have limited connection to the age-friendly cities agenda. Based on the findings, a set of recommendations are formulated to move the agenda forward. CC-BY Original article: https://doi.org/10.3390/ijerph17145202 (This article belongs to the Special Issue Feature Papers "Age-Friendly Cities & Communities: State of the Art and Future Perspectives") https://www.dehaagsehogeschool.nl/onderzoek/lectoraten/details/urban-ageing#over-het-lectoraat
MULTIFILE
The World Health Organization (WHO) strives to assist and inspire cities to become more ‘age-friendly’ through the Global Age-Friendly Cities Guide. An age-friendly city offers a supportive environment that enables residents to grow older actively within their families, neighbourhoods and civil society, and offers extensive opportunities for their participation in the community. In the attempts to make cities age-friendly, ageism may interact with these developments. The goal of this study was to investigate the extent to which features of age-friendly cities, both facilitators and hindrances, are visible in the city scape of the Dutch municipalities of The Hague and Zoetermeer and whether or not ageism is manifested explicitly or implicitly. A qualitative photoproduction study based on the Checklist of Essential Features of Age-Friendly Cities was conducted in five neighbourhoods. Both municipalities have a large number of visual age-friendly features, which are manifested in five domains of the WHO model, namely Communication and information; Housing; Transportation; Community support and health services; and Outdoor spaces and buildings. Age-stereotypes, both positive and negative, can be observed in the domain of Communication and information, especially in the depiction of third agers as winners. At the same time, older people and age-friendly features are very visible in the cityscapes of both municipalities, and this is a positive expression of the changing demographics. Original article at Sage: https://doi.org/10.1177/1420326X19857216
MULTIFILE
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
The production, use, disposal and recovery of packaging not only generates massive volumes of waste, it also consumes raw materials, water and energy (Fitzpatrick et al. 2012). Simultaneously, consumers have shown an increasing interest in products incorporating sustainable and social attributes (Kletzan et al., 2006). As a result, environmentally friendly packaging, also called ecofriendly or sustainable packaging, has become mainstream. In this context, packaging is more than just ensuring the product's protection and easing transportation, it is also a communicative tool (Palmer, 2000) and it becomes associated with multiple drivers of the purchasing process. Consequently, companies face pressure to innovate responding to consumer demands, and focusing on sustainable solutions that reduce harmful materials and favour green alternatives for both, the product and the packaging. Although the above has triggered research on consumer choice for sustainable products and alternatives on sustainable packaging, the relation between sustainable packaging and consumer behaviour remains underexplored. This research unpacks this relationship, i.e., empirically verifies which dimensions (recyclability, biodegradability, reusability) of sustainable packaging are perceived and valued by consumers. Put differently, this research investigates consumer behaviour towards the functions of sustainable packaging in terms of product protection, convenience, reliability of information and promotion, and scrutinises the perceived credibility of the associated ethical responsibility claims. It aims to identify those packaging materials and/or sustainability characteristics perceived as more sustainable by consumers as well as the factors influencing actual consumer choice towards sustainable packaged products. We aim to gain more insights in the perceptual frame that different types of consumers apply when exposed to sustainable packaging. To this end, we will make use of revealed preference methods to measure consumer valuations of sustainable packaged products. This game-theoretic approach should provide a more complete depiction of consumers' perceptions and preferences.
It is known that several bacteria in sewage treatment plants can produce attractive quantities of biodegradable polymers within their cell walls (up to 80% of the cell weight). These polymers may consist of polyhydroxyalkanoates (PHA), a bioplastic which exhibits interesting characteristics like excellent biodegradation, low melting point and good environmental footprint. PHA bioplastics or PHBV are still quite expensive because cumbersome downstream processing steps of the PHAcontaining bacteria are needed before PHA can be applied in products. In this proposal, the consortium investigates the possibilities for eliminating these expensive and environmentally intensive purification steps, and as a result contribute to speeding up the up-take of PHA production of residual streams by the market. The objective of the project is to investigate the possibilities of direct extrusion of PHAcontaining bacteria and the application opportunities of the extruded PHA. The consortium of experienced partners (Paques Biomaterials, MAAN Group, Ecoras and CoEBBE) will investigate and test the extrusion of different types of PHA-containing biomass, and analyse the products on composition, appearance and mechanical properties. Moreover, the direct extrusion process will be evaluated and compared with conventional PHA extraction and subsequent extrusion. The expected result will be a proof of principle and provide an operational window for the application of direct extrusion with PHA-containing biomass produced using waste streams, either used as such or in blends with purified PHA. Both the opportunities of the direct extrusion process itself as well as the application opportunities of the extruded PHA will be mapped. If the new process leads to a cheaper, more environmentally friendly produced and applicable PHA, the proof of principle developed by the consortium could be the first step in a larger scale development that could help speeding up the implementation of the technology for PHA production from residual streams in the market.