Data-driven condition-based maintenance (CBM) and predictive maintenance (PdM) strategies have emerged over recent years and aim at minimizing the aviation maintenance costs and environmental impact by the diagnosis and prognosis of aircraft systems. As the use of data and relevant algorithms is essential to AI-based gas turbine diagnostics, there are different technical, operational, and regulatory challenges that need to be tackled in order for the aeronautical industry to be able to exploit their full potential. In this work, the machine learning (ML) method of the generalised additive model (GAM) is used in order to predict the evolution of an aero engine’s exhaust gas temperature (EGT). Three different continuous synthetic data sets developed by NASA are employed, known as New Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS), with increasing complexity in engine deterioration. The results show that the GAM can be predict the evolution of the EGT with high accuracy when using several input features that resemble the types of physical sensors installed in aero gas turbines currently in operation. As the GAM offers good interpretability, this case study is used to discuss the different data attributes a data set needs to have in order to build trust and move towards certifiable models in the future.
DOCUMENT
Data-driven modeling is an imperative tool in various industrial applications, including many applications in the sectors of aeronautics and commercial aviation. These models are in charge of providing key insights, such as which parameters are important on a specific measured outcome or which parameter values we should expect to observe given a set of input parameters. At the same time, however, these models rely heavily on assumptions (e.g., stationarity) or are “black box” (e.g., deep neural networks), meaning that they lack interpretability of their internal working and can be viewed only in terms of their inputs and outputs. An interpretable alternative to the black box models and with considerably less assumptions is symbolic regression (SR). SR searches for the optimal model structure while simultaneously optimizing the model’s parameters without relying on an a priori model structure. In this work, we apply SR on real-life exhaust gas temperature (EGT) data, collected at high frequencies through the entire flight, in order to uncover meaningful algebraic relationships between the EGT and other measurable engine parameters. The experimental results exhibit promising model accuracy, as well as explainability returning an absolute difference of 3°C compared to the ground truth and demonstrating consistency from an engineering perspective.
DOCUMENT
From the article: "A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes (nanogap IDEs) with gaps from 50–250 nm have been designed and processed at full wafer-scale. These nanogap IDEs were then coated with poly(4-vinyl phenol) as a sensitive layer to form gas sensors for acetone detection at low concentrations. These acetone sensors showed excellent sensing performance with a dynamic range from 1000 ppm to 10 ppm of acetone at room temperature and the observed results are compared with conventional interdigitated microelectrodes according to our previous work. Sensitivity and reproducibility of devices are discussed in detail. Our approach of fabrication of nanogap IDEs together with a simple coating method to apply the sensing layer opens up possibilities to create various nanogap devices in a cost-effective manner for gas sensing applications"
MULTIFILE
The drive to reduce the carbon intensity of the energy system has generated much interest in applying carbon-free fuels such as ammonia (NH3) in combustion systems. The high hydrogen density and well-established production processes make NH3 a valuable chemical energy carrier to address and sustain the energy shift toward renewable energy source integration. However, some difficulties can be highlighted in the NH3 practical application. The combustion of NH3 is prone to producing harmful nitric oxides. In addition, NH3 has lower reactivity than most hydrocarbon fuels, which makes ignition challenging. Also, admixing NH3 with highly reactive fuels such as DME will facilitate ignition. The partnerships of this proposal are very interested in applying renewable NH3 as fuel in combined heat and power engines, and this research proposal suggests simulating a dual-fuel engine with NH3 as its primary fuel. The results of this research will help determine the optimum operating conditions for performing an experimental study.