Abstract 1 Scope A major downside of oral immunotherapy (OIT) for food allergy is the risk of severe side effects. Non‐digestible short‐ and long‐chain fructo‐oligosaccharides (scFOS/lcFOS) reduce allergy development in murine models. Therefore, it is hypothesized that scFOS/lcFOS can also support the efficacy of OIT in a peanut allergy model. 2 Methods and Results After sensitization to peanut extract (PE) using cholera toxin, C3H/HeOuJ mice are fed a 1% scFOS/lcFOS or control diet and receive OIT (1.5 or 15 mg PE). Hereafter, mice are exposed to PE via different routes to determine the safety and efficacy of treatment in clinical outcomes, PE‐specific antibody production, and numbers of various immune cells. scFOS/lcFOS increases short‐chain fatty acid levels in the caecum and reduce the acute allergic skin response and drop in body temperature after PE exposure. Interestingly, 15 mg and 1.5 mg OIT with scFOS/lcFOS induce protection against anaphylaxis, whereas 1.5 mg OIT alone does not. OIT, with or without scFOS/lcFOS, induces PE‐specific immunoglobulin (Ig) IgG and IgA levels and increases CD103+ dendritic cells in the mesenteric lymph nodes. 3 Conclusions scFOS/lcFOS and scFOS/lcFOS combined with low dose OIT are able to protect against a peanut‐allergic anaphylactic response.
LINK
Background: The coronavirus disease 2019 (COVID-19) pandemic is rapidly expanding across the world, with more than 100,000 new cases each day as of end-June 2020. Healthcare workers are struggling to provide the best care for COVID-19 patients. Approaches for invasive ventilation vary widely between and within countries and new insights are acquired rapidly. We aim to investigate invasive ventilation practices and outcome in COVID-19 patients in the Netherlands.Methods: PRoVENT-COVID ('study of PRactice of VENTilation in COVID-19') is an investigator-initiated national, multicenter observational study to be undertaken in intensive care units (ICUs) in The Netherlands. Consecutive COVID-19 patients aged 18 years or older, who are receiving invasive ventilation in the participating ICUs, are to be enrolled during a 10-week period, with a daily follow-up of 7 days. The primary outcome is ventilatory management (including tidal volume expressed as mL/kg predicted body weight and positive end-expiratory pressure expressed as cmH2O) during the first 3 days of ventilation. Secondary outcomes include other ventilatory variables, use of rescue therapies for refractory hypoxemia such as prone positioning and extracorporeal membrane oxygenation, use of sedatives, vasopressors and inotropes; daily cumulative fluid balances; acute kidney injury; ventilator-free days and alive at day 28 (VFD-28), duration of ICU and hospital stay, and ICU, hospital and 90-day mortality.Discussion: PRoVENT-COVID will be the largest observational study to date, with high density ventilatory data and major outcomes. There is urgent need for a better understanding of ventilation practices, and the effects of ventilator settings on outcomes in COVID-19 patients. The results of PRoVENT-COVID will be rapidly disseminated through electronic presentations, such as webinars and electronic conferences, and publications in international peer-reviewed journals. Access to source data will be made available through local, regional and national anonymized datasets on request, and after agreement of the PRoVENT-COVID steering committee.Trial Registration: PRoVENT-COVID is registered at clinicaltrials.gov (identifier NCT04346342).
Acne vulgaris is considered one of the most common medical skin conditions globally, affecting approximately 85% of individuals worldwide. While acne is most prevalent among adolescents between 15 to 24 years old, it is not uncommon in adults either. Acne addresses a number of different challenges, causing a multidimensional disease burden. These challenges include clinical sequelae, such as post inflammatory hyperpigmentation (PIH) and the chance of developing lifelong disfiguring scars, psychological aspects such as deficits in health related quality of life, chronicity of acne, economic factors, and treatment-related issues, such as antimicrobial resistance. The multidimensionality of the disease burden stipulates the importance of an effective and timely treatment in a well organised care system. Within the Netherlands, acne care provision is managed by several types of professional care givers, each approaching acne care from different angles: (I) general practitioners (GPs) who serve as ‘gatekeepers’ of healthcare within primary care; (II) dermatologists providing specialist medical care within secondary care; (III) dermal therapists, a non-physician medical professional with a bachelor’s degree, exclusively operating within the Australian and Dutch primary and secondary health care; and (IV) beauticians, mainly working within the cosmetology or wellness domain. However, despite the large variety in acne care services, many patients experience a delay between the onset of acne and receiving an effective treatment, or a prolonged use of care, which raises the question whether acne related care resources are being used in the most effective and (cost)efficient way. It is therefore necessary to gain insights into the organization and quality of Dutch acne health care beyond conventional guidelines and protocols. Exploring areas of care that may need improvement allow Dutch acne healthcare services to develop and improve the quality of acne care services in harmony with patient needs.
The production of denim makes a significant contribution to the environmental impact of the textile industry. The use of mechanically recycled fibers is proven to lower this environmental impact. MUD jeans produce denim using a mixture of virgin and mechanically recycled fibers and has the goal to produce denim with 100% post-consumer textile by 2020. However, denim fabric with 100% mechanically recycled fibers has insufficient mechanical properties. The goal of this project is to investigate the possibilities to increase the content of recycled post-consumer textile fibers in denim products using innovative recycling process technologies.
Developing and testing several AR and VR concepts for SAMSUNG (Benelux) Samsung and Breda University of Applied Sciences decided to work together on developing and testing several new digital media concepts with a focus on VR and gaming. This collaboration has led to several innovative projects and concepts, among others: the organisation of the first Samsung VR jam in which game and media students developed new concepts for SAMSUNG GEAR in 24 hours, the pre-development of a VR therapy concept (Fear of Love) created by CaptainVR, the Samsung Industry Case in which students developed new concepts for SAMSUNG GEAR (wearables), the IGAD VR game pitch where over 15 VR game concepts were created for SAMSUNG VR GEAR and numerous projects in which VR concepts are developed and created using new SAMSUNG technologies. Currently we are co-developing new digital HRM solutions.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.