In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
De cybersecuritybranche hamert al enige tijd op het feit dat een toenemend aantal organisaties te maken krijgt met verscherpte securityregels. Niet alleen omdat de NIS2- richtlijn en de opvolger van de Wet Beveiliging Netwerk- en Informatiebeveiliging (Wbni). Maar vooral om dat cyberdreigingen steeds complexer en aanvallen professioneler worden. Informatiesystemen blijven kwetsbaar en daar moet je je tegen wapenen. Niet in de laatste plaats omdat de IT-omgeving inmiddels zo nauw geïntegreerd is met de OT infrastructuur, dat continuïteit van processen die ons helpen in het dagelijks leven onder druk komt te staan. Van slagbomen voor parkeerterreinen tot waterpompen en sluizen om ons land droge voeten te garanderen. Voor toekomstige bedrijfsinnovatie is verdere integratie van systemen ook noodzakelijk. En uw securitybeleid helpt hierbij.
From the article: "Project execution in the construction industry faces major challenges, e.g. difficulty in coordination and cooperation. Operational procurement during project execution is no exception. In this paper we construct a maturity model, based on earlier work, consisting of six dimensions (goal, control, process, organization, information, technology) and five maturity stages (transactional-oriented, commercial-oriented, coordination, internal-optimized, external-optimized). The model can be used to determine the level of procurement maturity for each of the dimensions, and for the determination of a strategy for growth in the construction industry. With input from a major construction firm in the Netherlands, through simulating tooling, the model is evaluated for its contribution to growth in operational excellence. Results of the simulation show support for a relation between maturity growth and increased operational excellence." Recommended Citation Xing, Xiaochun; Versendaal, Johan; van den Akker, Marjan; and De Bevere, Bastiaan, "Maturity of Operational Procurement in the Construction Industry: A Business/IT-Alignment Perspective" (2011). BLED 2011 Proceedings. Paper 22. http://aisel.aisnet.org/bled2011/22 Affiliation: Xing Xiaochun - Swets Information Services, Netherlands; Johan Versendaal - Utrecht University, Netherlands; HU University of Applied Sciences, Netherlands; Marjan van den Akker - Utrecht University, Netherlands; Bastiaan De Bevere - Ballast Nedam, Netherlands.
MULTIFILE
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
The production of denim makes a significant contribution to the environmental impact of the textile industry. The use of mechanically recycled fibers is proven to lower this environmental impact. MUD jeans produce denim using a mixture of virgin and mechanically recycled fibers and has the goal to produce denim with 100% post-consumer textile by 2020. However, denim fabric with 100% mechanically recycled fibers has insufficient mechanical properties. The goal of this project is to investigate the possibilities to increase the content of recycled post-consumer textile fibers in denim products using innovative recycling process technologies.
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.