The project discussed in this paper is aimed at increasing people’s understanding of the existence and desired workings of ambient technology in the home by demonstrating its potential. For this purpose, an interactive dollhouse is presented. The dollhouse, a miniature model of a sensor-equipped home, was developed and used to engage elderly users in the design of an ambient monitoring system. This paper explains the design of the interactive dollhouse and the ways it was used as an elderly-centered design method for increasing understanding of the desired workings of ambient monitoring in the home.
A goal of K-12 science education is for learners to develop scientificliteracy. However, realizing this goal is being complicated by the availability ofabundant resources that vary strongly regarding their adherence to the Nature ofScience principles, particularly regarding socio-scientific issues, such as, forinstance, vaccination. It requires dedicated reasoning skills, often referred to ascritical thinking, to assess and value the arguments regarding such issues.To stimulate critical thinking, we investigate the use of interactive conceptcartoons. Instead of a single cartoon our instrument provides a sequence ofconcept cartoons. The cartoons are alternated with a diagram and concepts thatlearners have to place in the diagram, leading to a systems’ view on the subjectmatter.The instrument has been presented to teachers for expert review and evaluatedin three classrooms (6th grade) of one school (70 learners). In this paper, wepresent the interactive concept cartoon instrument and report on the study. Theresults indicate that learners are engaged when working with the instrument andlearn relevant knowledge regarding the subject matter and the Nature of Science.
PurposePhysical stores are increasingly dependent on impulse visits and the impulse purchases of passers-by. Interactive advertising screens in store windows could help retailers increase impulse-visit urges and impulse-buying urges. However, the effects of interactive screens in physical surroundings have not been studied before. Therefore, this study aimed to examine the effect of interactive screens on impulse urges and gain insight into the underlying mechanism that explains the possible effect.Design/methodology/approachAn interactive screen was placed in a store window. Using three field experiments, we studied the effect of interactivity-level (high vs low) on the impulse-visit and impulse-buying urges of passers-by, and the mediating role of self-agency in these effects.FindingsHighly interactive (compared to less interactive) advertising screens in store windows positively affect impulse-visit and impulse-buying urges through self-agency. Retailers can therefore use interactive advertising screens to increase the number of impulse purchases if feelings of self-agency are activated.Originality/valueThis is the first study to examine the extent to which interactive screens in a store window enhance the impulse-visit and impulse-buying urges of passers-by and the mediating factor of these effects. By conducting three field experiments, we achieved a high external validity and managed to share very reliable results owing to the replication of the findings.
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.
The SIA IMPULS project DIGIREAL aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies.
Inside Out is an innovative research project that translates cutting-edge microbiome science into immersive, multisensory experiences aimed at long-term behavioral and mental health transformation. Combining extended reality (XR), speculative gastronomy, and narrative therapy, the project enables participants to explore their inner microbiome landscape through taste, smell, touch, and interactive storytelling. This pioneering methodology connects gut-brain science with emotional and sensory engagement. Participants experience their bodies from the inside out, cultivating a visceral understanding of the symbiotic microbial worlds within us. The project includes AI-generated "drinkable memories," microbiome-inspired food designs, haptic-olfactory VR environments, and robotic interactions that choreograph the body as terrain. Developed in collaboration with designers from Polymorf, producer Studio Biarritz, psychiatrist-researcher Anja Lok, and microbiome scientists from Amsterdam UMC and the Amsterdam Microbiome Expertise Center, Inside Out bridges scientific rigor with artistic expression. The project seeks to: • Increase embodied understanding of the microbiome’s role in health and well-being • Shift public perception from hygiene-based fear to ecological thinking • Inspire behavioral change related to food, gut health, and mental resilience The outcomes are designed to reach a large audience and implementation in science museums, art-science festivals, and educational programs, with a view toward future clinical applications in preventive healthcare and mental well-being. By making the invisible microbiome tangible, Inside Out aims not only to inform, but to transform—redefining how we relate to the ecosystems within us.