This study presents a detailed buckling analysis of laminated composites reinforced by multi-walled carbon nanotube (MWCNT) inclusions using a multiscale computational framework. It combines multiple analytical and computational techniques to assess the performance of these composites under varying hygro-thermo-mechanical conditions. The model incorporates nanoscopic MWCNT characteristics, estimates orthotropic constants, and investigates the impact of various factors on the critical buckling load of MWCNT-based laminates. Comparison with existing data validates our approach, marking the first usage of the multiscale finite element method for predicting the buckling behaviour of MWCNT-reinforced laminates. This research offers valuable design insights for various industries including aerospace and automotive.
DOCUMENT
Purpose: The present study deals with the numerical modeling of the low-velocity impact damage of laminated composites which have increasingly important applications in aerospace primary structures. Such damage, generated by various sources during ground handling, substantially reduces the mechanical residual performance and the safe-service life. The purpose of this paper is to present and validate a computationally efficient approach in order to explore the effect of critical parameters on the impact damage characteristics.Design/methodology/approach: Numerical modeling is considered as one of the most efficient tool as compared to the expensive and time-consuming experimental testing. In this paper, a finite element model based on explicit dynamics formulations is adopted. Hashin criterion is applied to predict the intralaminar damage initiation and evolution. The numerical analysis is performed using the ABAQUS® programme. Findings: The employed modeling approach is validated using corresponding numerical data found in the literature and the presented results show a reasonable correlation to the available literature data. It is demonstrated that the current model can be used to capture the force-time response as well as damage parameter maps showing the intralaminar damage evolution for different impact cases with respect to the physical boundary conditions and a range of impact energies. Originality/value: Low-velocity impact damage of laminated composites is still not well understood due to the complexity and non-linearity of the damage zone. The presented model is used to predict the force-time response which is considered as one of the most important parameters influencing the structural integrity. Furthermore, it is used for capturing the damage shape evolution, exhibiting a high degree of capability as a damage assessment computational tool.
DOCUMENT
It is of utmost importance to collect organic waste from households as a separate waste stream. If collected separately, it could be used optimally to produce compost and biogas, it would not pollute fractions of materials that can be recovered from residual waste streams and it would not deteriorate the quality of some materials in residual waste (e.g. paper). In rural areas with separate organic waste collection systems, large quantities of organic waste are recovered. However, in the larger cities, only a small fraction of organic waste is recovered. In general, citizens dot not have space to store organic waste without nuisances of smell and/or flies. As this has been the cause of low organic waste collection rates, collection schemes have been cut, which created a further negative impact. Hence, additional efforts are required. There are some options to improve the organic waste recovery within the current system. Collection schemes might be improved, waste containers might be adapted to better suit the needs, and additional underground organic waste containers might be installed in residential neighbourhoods. There are persistent stories that separate organic waste collection makes no sense as the collectors just mix all municipal solid waste after collection, and incinerate it. Such stories might be fuelled by the practice that batches of contaminated organic waste are indeed incinerated. Trust in the system is important. Food waste is often regarded as unrein. Users might hate to store food waste in their kitchen that could attract insects, or the household pets. Hence, there is a challenge for socio-psychological research. This might also be supported by technology, e.g. organic waste storage devices and measures to improve waste separation in apartment buildings, such as separate chutes for waste fractions. Several cities have experimented with systems that collect organic wastes by the sewage system. By using a grinder, kitchen waste can be flushed into the sewage system, which in general produces biogas by the fermentation of sewage sludge. This is only a good option if the sewage is separated from the city drainage system, otherwise it might create water pollution. Another option might be to use grinders, that store the organic waste in a tank. This tank could be emptied regularly by a collection truck. Clearly, the preferred option depends on local conditions and culture. Besides, the density of the area, the type of sewage system and its biogas production, and the facilities that are already in place for organic waste collection are important parameters. In the paper, we will discuss the costs and benefits of future organic waste options and by discussing The Hague as an example.
DOCUMENT
The prediction of mechanical elastic response of laminated hybrid polymer composites with basic carbon nanostructure, that is carbon nanotubes and graphene, inclusions has gained importance in many advanced industries like aerospace and automotive. For this purpose, in the current work, a hierarchical, four-stage, multilevel framework is established, starting from the nanoscale, up to the laminated hybrid composites. The proposed methodology starts with the evaluation of the mechanical properties of carbon nanostructure inclusions, at the nanoscale, using advanced 3D spring-based finite element models. The nanoinclusions are considered to be embedded randomly in the matrix material, and the Halpin-Tsai model is used in order to compute the average properties of the hybrid matrix at the lamina micromechanics level. Then, the standard Halpin-Tsai equations are employed to establish the orthotropic elastic properties of the unidirectional carbon fiber composite at the lamina macromechanics level. Finally, the lamination theory is implemented in order to establish the macroscopic force-strain and moment-curvature relations at the laminate level. The elastic mechanical properties of specific composite configurations and their performance in different mechanical tests are evaluated using finite element analysis and are found to considerably increase with the nanomaterial volume fraction increase for values up to 0.5. Further, the hybrid composite structures with graphene inclusions demonstrate better mechanical performance as compared to the identical structures with CNT inclusions. Comparisons with theoretical or other numerical techniques, where it is possible, demonstrate the accuracy of the proposed technique.
DOCUMENT
This study introduces a detailed method for analyzing the buckling behavior of laminated composite structures strengthened with multi-walled carbon nanotubes (MWCNTs). We propose a multi-scale analysis that combines analytical and computational techniques to assess the mechanical performance of MWCNT-reinforced composites under combined moisture, temperature, and mechanical stress conditions. The Halpin-Tsai equations are used to calculate the overall stiffness properties of the nano-enhanced matrix, considering factors like MWCNT clustering, alignment, and curvature. Additionally, we incorporate the nanoscopic, size-dependent features of MWCNTs into our model. The Chamis micromechanical formulas are applied to determine the individual elastic properties of the nanocomposite layers, considering the impacts of temperature and moisture. We then explore how variables such as MWCNT content and size, along with temperature and moisture levels, influence the critical buckling load of MWCNT-based laminated composite beams and plates using our multi-scale model. Our results are successfully compared with existing experimental and theoretical data to validate our approach. The developed method offers significant insights for the design and optimization of MWCNT-reinforced composites, potentially benefiting various engineering fields, including aerospace and automotive industries.
DOCUMENT
Laminated composites have important applications in modern aeronautical structures due to their extraordinary mechanical and environmental behaviour. Nevertheless, aircraft composite structures are highly vulnerable to impact damage, either by low-velocity sources during maintenance or high-velocity sources during in-flight events. Even barely visible impact damage induced by low-velocity loading, substantially reduces the residual mechanical performance and the safe-service life of the composites structures. Despite the extensive research already carried out, impact damage of laminated composite structures is still not well understood and it is an area of on-going research. Numerical modelling is considered as the most efficient tool as compared to the expensive and time-consuming experimental testing. In this paper, a finite element model based on explicit dynamics formulations is adopted. Hashin criterion is applied to predict the intra-laminar damage initiation and evolution. The numerical analysis is performed using the ABAQUS ® programme. The employed modelling approach is validated using numerical results found in the literature and the presented results show an acceptable correlation to the available literature data. It is demonstrated that the presented model is able to capture force-time response as well as damage evolution map for a range of impact energies.
DOCUMENT
In the high-tech mechatronics world, aluminum and steel are well known materials, while carbon fiber is often neglected. In the RAAK project 'Composites in Mechatronics', the use of carbon fiber composites in mechatronics is investigated.
DOCUMENT
From the article: Business rules management is a mean by which an organization realizes controllability of business activities to fulfill goals. Currently the focus of controllability is mainly on effectiveness, efficiency and output quality. Little attention is paid to risk, stakeholder concerns and high level goals. The purpose of this work is to present a viewpoint relating business rules management with concepts of risks, stakeholder, concerns and goals. The viewpoint is presented by means of a meta-model existing out of six concepts: stakeholder, concern, goal, business rule, requirements and implementation mechanism. In a case study the proposed view is validated in terms of completeness, usability and accuracy. Results illustrate the completeness, usability and a high degree of accuracy of our defined view. Future research is suggested on the development of a modeling language to improve the communicational value and ease of use of the meta-model.
DOCUMENT
These conference proceedings to the 10th annual conference of the AESOP Sustainable Food Planning group are organised as follows: the following four sections contain the short papers belonging to the four tracks that made up the conference (social inclusion; urban agriculture; urban planning, design and development; food governance). The last section consists of the abstracts of the book and poster presentations, a short report on the YAP workshop held at the first day of the conference, and a short report on the excursion organised at the last conference day.
DOCUMENT