A short paper on the whats and the hows of learning technology standardization
DOCUMENT
Presentatie tijdens studiedag Blended Learning van Vereniging Hogescholen, Utrecht.
DOCUMENT
De implementatie van blended learning – waarbij fysiek leren wordt gecombineerd met online leren – staat bij veel onderwijsinstellingen hoog op de agenda, om activeren, intensiveren, flexibiliseren, differentiëren en/of personaliseren mogelijk te maken (Bos, 2022). Als gevolg hiervan krijgt de online leeromgeving binnen onderwijsinstellingen een steeds nadrukkelijkere rol. Om te komen tot betekenisvol leren in deze online leeromgeving (vaak in de vorm van een leermanagementsysteem, ook wel LMS genoemd), is het belangrijk dat studenten hierin actief aan de slag gaan met de aangeboden onderwijsinhoud en geïnteresseerd en gemotiveerd zijn om dit te (gaan) doen (Michael, 2006; Alhazmi & Rahman, 2012; Derboven et al., 2017; Grant-Smith et al., 2019). Echter, in de praktijk blijkt dat lang niet altijd sprake is van deze gewenste student engagement. Bijlage 1: Dit artikel geeft de resultaten weer van een onderzoek naar mogelijkheden om student engagement in het LMS te vergroten. Deze resultaten zijn tevens samengevat in twee overzichtelijke infographics. Bijlage 2: Infographic 1 omvat het gehele overzicht van de (mogelijk) te implementeren ontwerpprincipes. Bijlage 3: Infographic 2 bevat een stappenplan voor docenten om hun LMS te analyseren en te optimaliseren (laaghangend fruit).
MULTIFILE
Renewable energy, particularly offshore wind turbines, plays a crucial role in the Netherlands' and EU energy-transition-strategies under the EU Green Deal. The Dutch government aims to establish 75GW offshore wind capacity by 2050. However, the sector faces human and technological challenges, including a shortage of maintenance personnel, limited operational windows due to weather, and complex, costly logistics with minimal error tolerance. Cutting-edge robotic technologies, especially intelligent drones, offer solutions to these challenges. Smaller drones have gained prominence through applications identifying, detecting, or applying tools to various issues. Interest is growing in collaborative drones with high adaptability, safety, and cost-effectiveness. The central practical question from network partners and other stakeholders is: “How can we deploy multiple cooperative drones for maintenance of wind turbines, enhancing productivity and supporting a viable business model for related services?” This is reflected in the main research question: "Which drone technologies need to be developed to enable collaborative maintenance of offshore wind turbines using multiple smaller drones, and how can an innovative business model be established for these services? In collaboration with public and private partners, Saxion, Hanze, and RUG will research the development of these collaborative drones and investigate the technology’s potential. The research follows a Design Science Research methodology, emphasizing solution-oriented applied research, iterative development, and rigorous evaluation. Key technological building blocks to be developed: • Morphing drones, • Intelligent mechatronic tools, • Learning-based adaptive interaction controllers and collaborations. To facilitate the sustainable industrial uptake of the developed technologies, appropriate sustainable business models for these technologies and services will be explored. The project will benefit partners by enhancing their operations and business. It will contribute to renewing higher professional education and may lead to the creation of spin-offs/spinouts which bring this innovative technology to the society, reinforcing the Netherlands' position as a leading knowledge economy.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
The project’s aim is to foster resilient learning environments, lessen early school leaving, and give European children (ages 4 -6) a good start in their education while providing and advancing technical skills in working with technology that will serve them well in life. For this purpose, the partnership has developed age appropriate ICT animation tools and games - as well as pedagogical framework specific to the transition phase from kindergarten to school.