Learning objects are bits of learning content. They may be reused 'as is' (simple reuse) or first be adapted to a learner's particular needs (flexible reuse). Reuse matters because it lowers the development costs of learning objects, flexible reuse matters because it allows one to address learners' needs in an affordable way. Flexible reuse is particularly important in the knowledge economy, where learners not only have very spefic demands but often also need to pay for their own further education. The technical problems to simple and flexible are rapidly being resolved in various learning technology standardisation bodies. This may suggest that a learning object economy, in which learning objects are freely exchanged, updated and adapted, is about to emerge. Such a belief, however, ignores the significant psychological, social and organizational barriers to reuse that still abound. An inventory of these problems is made and possible ways to overcome them are discussed.
A short paper on the whats and the hows of learning technology standardization
Educational programs teaching entrepreneurial behaviour and knowledge are crucial to a vital and healthy economy. The concept of building a Communities of Practice (CoP) could be very promising. CoP’s are formed by people who engage in a process of collective learning in a shared domain of human endeavour (Wenger, McDermott and Snyder, 2002). They consist of a group of people who share a concern or a passion for something they do and learn how to do it better as they interact regularly. Normally CoP’s are rather homogeneous. Saxion institute Small Business & Retail Management (SB&RM) started a CoP with entrepreneurs September 2007. Typical in the this community, are the differences between the partners. The Community consists of students, entrepreneurs and members of an institution for higher education. They have different characteristics and they don’t share the same knowledge. Thus, building long-lasting relations can be complicated. Solid relations for longer periods are nevertheless inevitable in using CoP as a mean in an educational concept that takes approximately 4 years. After one year an evaluation took place on the main aspects of a lasting partnership. The central problem SB&RM in Deventer faces is to design the CoP in a way possible members will join and stay for a longer period and in a way it ensures entrepreneurial learning. This means important design characteristics have to be identified, and the CoP in Deventer has to be evaluated to assess whether it meets those design characteristics in an effective and efficient way. The main target of the evaluation is to determine which key factors are important to make sure continuity in partnership is assured and entrepreneurial learning is best supported. To solve the problem, an investigation on how a CoP works, what group dynamics take place, and how this can be measured has to be conducted. Furthermoreusing the CoP as a tool for entrepreneurship means key aspects of entrepreneurial learning have to be identified. After that the CoP in Deventer has to be examined on both aspects. According to literature CoP’s define themselves along three dimensions: domain (indicating what is it about), community (defining how it functions), and practice (indicating what capabilities it has produced) (Wenger, 1998). This leads to meaningful, shared and coordinated activities (Akkerman et al, 2007): Key aspects of a successful CoP lie in both hard and soft sides of creating a partnership. It means on one hand a CoP has to deal with defining their own overall vision, formulating long term goals and targets on the short term. They have to formulate how to achieve those targets and create meaningful activities (reification). On the other hand a CoP has to deal with relations, trust, norms and values (participation). Reification and participation as design characteristic can provide indicators on which the CoP in Deventer can be evaluated. A lasting partnership means joining the CoP and staying. Weick provides us with a suitable model that enables us to do research and evaluate whether the CoP in Deventer is successful or not, Weick’s model of means convergence. To effectively ensure entrepreneurial learning the process in the CoP has to provide or enable actionoriented forms through Project-based activity, accompanied by reflection, with high emotional exposure (or cognitive affection) preferably caused by discontinuities to be suitable as a tool in entrepreneurial learning. Furthermore it should be accompanied by the right preconditions to work effectively and efficiently. The evaluation of the present CoP in Deventer is done by interviewing all participants at the end of the first year of the partnership. In a structured interview, based on literature studies, all participants were separately questioned
MULTIFILE
The HAS professorship Future Food Systems is performing applied research with students and external partners to transform our food system towards a more sustainable state. In this research it is not only a question of what is needed to achieve this, but also how and with whom. The governance of our food system needs rethinking to get the transformative momentum going in a democratic and constructive manner. Building on the professorship’s research agenda and involvement in the transdisciplinary NWA research project, the postdoc will explore collective ownership and inclusive participation as two key governance concepts for food system transformation. This will be done in a participatory manner, by learning from and with innovative bottom-up initiatives and practitioners from the field. By doing so, the postdoc will gain valuable practical insights that can aid to new approaches and (policy) interventions which foster a sustainable and just food system in the Netherlands and beyond. A strong connection between research and education is created via the active research involvement of students from different study programs, supervised by the postdoc (Dr. B. van Helvoirt). The acquired knowledge is embedded in education by the postdoc by incorporating it into HAS study program curricula and courses. In addition, it will contribute to the further professional development of qualitative research skills among HAS students and staff. Through scientific, policy and popular publications, participation in (inter)national conferences and meetings with experts and practitioners, the exposure and network of the postdoc and HAS in the field of food systems and governance will be expanded. This will allow for the setting up of a continuous research effort on this topic within the professorship via follow-up research with knowledge institutes, civic society groups and partners from the professional field.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.