ABSTRACT Objective: To evaluate the effectiveness of the WhiteTeeth mobile app, a theory-based mobile health (mHealth) program for promoting oral hygiene in adolescent orthodontic patients. Methods: In this parallel randomized controlled trial, the data of 132 adolescents were collected during three orthodontic check-ups: at baseline (T0), at 6-week follow-up (T1), and at 12-week follow-up (T2). The intervention group was given access to the WhiteTeeth app in addition to usual care (n=67). The control group received usual care only (n=65). The oral hygiene outcomes were the presence and the amount of dental plaque (Al-Anezi and Harradine plaque Index); and the total number of sites with gingival bleeding (Bleeding on Marginal Probing Index). Oral health behavior and its psychosocial factors were measured through a digital questionnaire. We performed linear mixed model analyses to determine the intervention effects. Results: At 6-week follow-up, the intervention led to a significant decrease in gingival bleeding (B=-3.74; 95%CI -6.84 to -0.65), and an increase in the use of fluoride mouth rinse (B=1.93; 95%CI 0.36 to 3.50). At 12-week follow-up, dental plaque accumulation (B=-11.32; 95%CI -20.57 to -2.07) and the number of sites covered. Conclusions: The results show that adolescents with fixed orthodontic appliances can be helped to improve their oral hygiene when usual care is combined with a mobile app that provides oral health education and automatic coaching. Netherlands Trial Registry Identifier: NTR6206: 20 February 2017.
LINK
BACKGROUND: The number of mobile apps that support smoking cessation is growing, indicating the potential of the mobile phone as a means to support cessation. Knowledge about the potential end users for cessation apps results in suggestions to target potential user groups in a dissemination strategy, leading to a possible increase in the satisfaction and adherence of cessation apps.OBJECTIVE: This study aimed to characterize potential end users for a specific mobile health (mHealth) smoking cessation app.METHODS: A quantitative study was conducted among 955 Dutch smokers and ex-smokers. The respondents were primarily recruited from addiction care facilities and hospitals through Web-based media via websites and forums. The respondents were surveyed on their demographics, smoking behavior, and personal innovativeness. The intention to use and the attitude toward a cessation app were determined on a 5-point Likert scale. To study the association between the characteristics and intention to use and attitude, univariate and multivariate ordinal logistic regression analyses were performed.RESULTS: The multivariate ordinal logistic regression showed that the number of previous quit attempts (odds ratio [OR] 4.1, 95% CI 2.4-7.0, and OR 3.5, 95% CI 2.0-5.9) and the score on the Fagerstrom Test of Nicotine Dependence (OR 0.8, 95% CI 0.8-0.9, and OR 0.8, 95% CI 0.8-0.9) positively correlates with the intention to use a cessation app and the attitude toward cessation apps, respectively. Personal innovativeness also positively correlates with the intention to use (OR 0.3, 95% CI 0.2-0.4) and the attitude towards (OR 0.2, 95% CI 0.1-0.4) a cessation app. No associations between demographics and the intention to use or the attitude toward using a cessation app were observed.CONCLUSIONS: This study is among the first to show that demographic characteristics such as age and level of education are not associated with the intention to use and the attitude toward using a cessation app when characteristics related specifically to the app, such as nicotine dependency and the number of quit attempts, are present in a multivariate regression model. This study shows that the use of mHealth apps depends on characteristics related to the content of the app rather than general user characteristics.
DOCUMENT
Background: Alcohol use is associated with an automatic tendency to approach alcohol, and the retraining of this tendency (cognitive bias modification [CBM]) shows therapeutic promise in clinical settings. To improve access to training and to enhance participant engagement, a mobile version of alcohol avoidance training was developed.Objective: The aims of this pilot study were to assess (1) adherence to a mobile health (mHealth) app; (2) changes in weekly alcohol use from before to after training; and (3) user experience with regard to the mHealth app.Methods: A self-selected nonclinical sample of 1082 participants, who were experiencing problems associated with alcohol, signed up to use the alcohol avoidance training app Breindebaas for 3 weeks with at least two training sessions per week. In each training session, 100 pictures (50 of alcoholic beverages and 50 of nonalcoholic beverages) were presented consecutively in a random order at the center of a touchscreen. Alcoholic beverages were swiped upward (away from the body), whereas nonalcoholic beverages were swiped downward (toward the body). During approach responses, the picture size increased to mimic an approach movement, and conversely, during avoidance responses, the picture size decreased to mimic avoidance. At baseline, we assessed sociodemographic characteristics, alcohol consumption, alcohol-related problems, use of other substances, self-efficacy, and craving. After 3 weeks, 37.89% (410/1082) of the participants (posttest responders) completed an online questionnaire evaluating adherence, alcohol consumption, and user satisfaction. Three months later, 19.03% (206/1082) of the participants (follow-up responders) filled in a follow-up questionnaire examining adherence and alcohol consumption.Results: The 410 posttest responders were older, were more commonly female, and had a higher education as compared with posttest dropouts. Among those who completed the study, 79.0% (324/410) were considered adherent as they completed four or more sessions, whereas 58.0% (238/410) performed the advised six or more training sessions. The study identified a significant reduction in alcohol consumption of 7.8 units per week after 3 weeks (95% CI 6.2-9.4, P<.001; n=410) and another reduction of 6.2 units at 3 months for follow-up responders (95% CI 3.7-8.7, P<.001; n=206). Posttest responders provided positive feedback regarding the fast-working, simple, and user-friendly design of the app. Almost half of the posttest responders reported gaining more control over their alcohol use. The repetitious and nonpersonalized nature of the intervention was suggested as a point for improvement.Conclusions: This is one of the first studies to employ alcohol avoidance training in a mobile app for problem drinkers. Preliminary findings suggest that a mobile CBM app fulfils a need for problem drinkers and may contribute to a reduction in alcohol use. Replicating these findings in a controlled study is warranted.
DOCUMENT
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.
Een goede voorbereiding is het halve werk, ook voor patiënten op de wachtlijst voor een chirurgische ingreep. We onderzoeken hoe de e-health-applicatie 'Beter Voorbereid' mensen helpt om sterker aan de start van een operatie te staan en zo sneller te herstellen.
Today, embedded devices such as banking/transportation cards, car keys, and mobile phones use cryptographic techniques to protect personal information and communication. Such devices are increasingly becoming the targets of attacks trying to capture the underlying secret information, e.g., cryptographic keys. Attacks not targeting the cryptographic algorithm but its implementation are especially devastating and the best-known examples are so-called side-channel and fault injection attacks. Such attacks, often jointly coined as physical (implementation) attacks, are difficult to preclude and if the key (or other data) is recovered the device is useless. To mitigate such attacks, security evaluators use the same techniques as attackers and look for possible weaknesses in order to “fix” them before deployment. Unfortunately, the attackers’ resourcefulness on the one hand and usually a short amount of time the security evaluators have (and human errors factor) on the other hand, makes this not a fair race. Consequently, researchers are looking into possible ways of making security evaluations more reliable and faster. To that end, machine learning techniques showed to be a viable candidate although the challenge is far from solved. Our project aims at the development of automatic frameworks able to assess various potential side-channel and fault injection threats coming from diverse sources. Such systems will enable security evaluators, and above all companies producing chips for security applications, an option to find the potential weaknesses early and to assess the trade-off between making the product more secure versus making the product more implementation-friendly. To this end, we plan to use machine learning techniques coupled with novel techniques not explored before for side-channel and fault analysis. In addition, we will design new techniques specially tailored to improve the performance of this evaluation process. Our research fills the gap between what is known in academia on physical attacks and what is needed in the industry to prevent such attacks. In the end, once our frameworks become operational, they could be also a useful tool for mitigating other types of threats like ransomware or rootkits.