Background: Multimodal prehabilitation programs are effective at reducing complications after colorectal surgery in patients with a high risk of postoperative complications due to low aerobic capacity and/or malnutrition. However, high implementation fidelity is needed to achieve these effects in real-life practice. This study aimed to investigate the implementation fidelity of an evidence-based prehabilitation program in the real-life context of a Dutch regional hospital.Methods: In this observational cohort study with multiple case analyses, all patients who underwent colorectal surgery from January 2023 to June 2023 were enrolled. Patients meeting the criteria for low aerobic capacity or malnutrition were advised to participate in a prehabilitation program. According to recent scientific insights and the local care context, this program consisted of four exercise modalities and three nutrition modalities. Implementation fidelity was investigated by evaluating: (1) coverage (participation rate), (2) duration (number of days between the start of prehabilitation and surgery), (3) content (delivery of prescribed intervention modalities), and (4) frequency (attendance of sessions and compliance with prescribed parameters). An aggregated percentage of content and frequency was calculated to determine overall adherence.Results: Fifty-eight patients intended to follow the prehabilitation care pathway, of which 41 performed a preoperative risk assessment (coverage 80%). Ten patients (24%) were identified as high-risk and participated in the prehabilitation program (duration of 33-84 days). Adherence was high (84-100%) in five and moderate (72-73%) in two patients. Adherence was remarkably low (25%, 53%, 54%) in three patients who struggled to execute the prehabilitation program due to multiple physical and cognitive impairments.Conclusion: Implementation fidelity of an evidence-based multimodal prehabilitation program for high-risk patients preparing for colorectal surgery in real-life practice was moderate because adherence was high for most patients, but low for some patients. Patients with low adherence had multiple impairments, with consequences for their preparation for surgery. For healthcare professionals, it is recommended to pay attention to high-risk patients with multiple impairments and further personalize the prehabilitation program. More knowledge about identifying and treating high-risk patients is needed to provide evidence-based recommendations and to obtain higher effectiveness.
LINK
The following paper presents a methodology we developed for addressing the case of a multi-modal network to be implemented in the future. The methodology is based on a simulation approach and presents some characteristics that make a challenge to be verified and validated. To overcome this limitation, we proposed a novel methodology that implies interaction with subjectmatter experts, revision of current data, collection and assessment of future performance and educated assumptions. With that methodology we could construct the complete passenger trajectory Door to door in Europe. The results indicate that the approach allows to approach infrastructure analysis at an early stage to have an initial estimation of the upper boundary of performance indicators. To exemplify this, we present the results for a case study in Europe.
It is expected that future transportation technologies will positively impact how passengers travel to their destinations. Europe aims to integrate air transport into the overall multimodal transport network to provide better service to passengers, while reducing travel time and making the network more resilient to disruptions. This study presents an approach that investigates these aspects by developing a simulation platform consisting of different models, allowing us to simulate the complete door-to-door trajectory of passengers. To address the future potential, we devised scenarios considering three time horizons: 2025, 2035, and 2050. The experimental design allowed us to identify potential obstacles for future travel, the impact on the system’s resilience, and how the integration of novel technology affects proxy indicators of the level of service, such as travel time or speed. In this paper, we present for the first time an innovative methodology that enables the modelling and simulation of door-to-door travel to investigate the future performance of the transport network. We apply this methodology to the case of a travel trajectory from Germany to Amsterdam considering a regional and a hub airport; it was built considering current information and informed assumptions for future horizons. Results indicate that, with the new technology, the system becomes more resilient and generally performs better, as the mean speed and travel time are improved. Furthermore, they also indicate that the performance could be further improved considering other elements such as algorithmic governance.
Teachers have a crucial role in bringing about the extensive social changes that are needed in the building of a sustainable future. In the EduSTA project, we focus on sustainability competences of teachers. We strengthen the European dimension of teacher education via Digital Open Badges as means of performing, acknowledging, documenting, and transferring the competencies as micro-credentials. EduSTA starts by mapping the contextual possibilities and restrictions for transformative learning on sustainability and by operationalising skills. The development of competence-based learning modules and open digital badge-driven pathways will proceed hand in hand and will be realised as learning modules in the partnering Higher Education Institutes and badge applications open for all teachers in Europe.Societal Issue: Teachers’ capabilities to act as active facilitators of change in the ecological transition and to educate citizens and workforce to meet the future challenges is key to a profound transformation in the green transition.Teachers’ sustainability competences have been researched widely, but a gap remains between research and the teachers’ practise. There is a need to operationalise sustainability competences: to describe direct links with everyday tasks, such as curriculum development, pedagogical design, and assessment. This need calls for an urgent operationalisation of educators’ sustainability competences – to support the goals with sustainability actions and to transfer this understanding to their students.Benefit to society: EduSTA builds a community, “Academy of Educators for Sustainable Future”, and creates open digital badge-driven learning pathways for teachers’ sustainability competences supported by multimodal learning modules. The aim is to achieve close cooperation with training schools to actively engage in-service teachers.Our consortium is a catalyst for leading and empowering profound change in the present and for the future to educate teachers ready to meet the challenges and act as active change agents for sustainable future. Emphasizing teachers’ essential role as a part of the green transition also adds to the attractiveness of teachers’ work.
ATAL: Automated Transport and Logistics Automatisering van transportmodaliteiten is overal ter wereld gaande. Met een Duurzaam Living Lab kunnen multimodale geautomatiseerde transportoperaties verder in de praktijk duurzaam en opschaalbaar worden ontwikkeld. Hierbij worden beleidsmakers en organisaties ondersteund in deze transitie. De maatschappelijke voordelen van grootschalige uitrol van Automated Trucks en Platooning, Automated Train Operations en Autonomous Sailing zijn onder andere minder energieverbruik en emissies, betere doorstroming en betere verkeersveiligheid. De Duurzame Living Lab heeft betrekking op het haven-achterland vervoer van Rotterdam richting Duitsland en België. Het wegvervoer maakt gebruik van de TULIP-Corridor, water en spoor modaliteit volgen de MIRT goederencorridors tot in het Ruhrgebied.
De opkomst van Mobility as a Service (MaaS) is een gevolg van verschillende maatschappelijke en technologische ontwikkelingen. MaaS is het aanbod van multimodale, vraag-gestuurde mobiliteitsdiensten, waarbij op maat gemaakte reismogelijkheden via een digitaal platform (bijvoorbeeld een mobiele app) met real-time informatie aan klanten worden aangeboden, inclusief betaling en afhandeling van transacties. Meerdere regio’s en steden zijn momenteel op zoek hoe de ontwikkeling van MaaS succesvol te faciliteren. Ter ondersteuning van deze regio’s en steden ontwikkelen de HAN en Movares in dit onderzoek een “MaaS-ladder”. Deze MaaS-ladder geeft voor elke stad of regio een integraal overzicht hoe zij scoort op verschillende factoren die voor het succes van MaaS belangrijk zijn. Door middel van indicatoren wordt een sectoraal overzicht gegenereerd hoe gereed een stad of regio is en wordt inzichtelijk gemaakt welke ontwikkelingen en beleidsbeslissingen genomen kunnen worden om de implementatie van nieuwe mobiliteitsdiensten, zoals MaaS, te faciliteren. Ook kan de ambitie op de bepalende factoren worden gemeten, zodat inzichtelijk wordt in hoeverre de ambitie behaald wordt. Onderdeel van het onderzoek is een proof-of-concept door het toepassen van de MaaS-ladder in pilots samen met de gemeenten Amsterdam, Nijmegen, Apeldoorn, Den Haag en Doetinchem. Met de uitkomsten van de pilots kan de MaaS-ladder aangescherpt worden en kunnen steden en regio’s van elkaar leren door best practices uit te wisselen.