OBJECTIVES: The INTERMED Self-Assessment questionnaire (IMSA) was developed as an alternative to the observer-rated INTERMED (IM) to assess biopsychosocial complexity and health care needs. We studied feasibility, reliability and validity of the IMSA within a large and heterogeneous international sample of adult hospital in- and outpatients, and its predictive value for health care utilization (HCU) and quality of life (QoL).METHODS: 850 participants aged 17 to 90 from 5 countries completed the IMSA and were evaluated with the IM. The following measurement properties were determined: feasibility by percentages of missing values; reliability by Cronbach's alpha; interrater agreement by intraclass correlation coefficients (ICCs); convergent validity of IMSA scores with mental health (SF-36 emotional well-being subscale and HADS), medical health (CIRS) and QoL (EQ-5D) by Spearmans rank correlations; predictive validity of IMSA scores with HCU and QoL by (generalized) linear mixed models.RESULTS: Feasibility, face validity and reliability (Cronbach's alpha 0.80) were satisfactory. ICC between IMSA and IM total scores was .78 (95% CI .75-.81). Correlations of the IMSA with the SF-36, HADS, CIRS and EQ-5D (convergent validity) were -.65, .15, .28 and -.59, respectively. The IMSA significantly predicted QoL and also HCU (emergency room visits, hospitalization, outpatient visits, and diagnostic exams) after 3 and 6 months follow-up. Results were comparable between hospital sites, in- and outpatients, and age groups.CONCLUSION: The IMSA is a generic and time-efficient method to assess biopsychosocial complexity and to provide guidance for multidisciplinary care trajectories in adult patients, with good reliability and validity across different cultures.
DOCUMENT
Formative assessment (FA) is an effective educational approach for optimising student learning and is considered as a promising avenue for assessment within physical education (PE). Nevertheless, implementing FA is a complex and demanding task for in-service PE teachers who often lack formal training on this topic. To better support PE teachers in implementing FA into their practice, we need better insight into teachers’ experiences while designing and implementing formative strategies. However, knowledge on this topic is limited, especially within PE. Therefore, this study examined the experiences of 15 PE teachers who participated in an 18-month professional development programme. Teachers designed and implemented various formative activities within their PE lessons, while experiences were investigated through logbook entries and focus groups. Findings indicated various positive experiences, such as increased transparency in learning outcomes and success criteria for students as well as increased student involvement, but also revealed complexities, such as shifting teacher roles and insufficient feedback literacy among students. Overall, the findings of this study underscore the importance of a sustained, collaborative, and supported approach to implementing FA.
DOCUMENT
This paper elaborates on potential linkages between TNAs and NDCs. TNAs have been conducted by developing countries since 2001 as a participatory process to prioritize technologies for mitigation and adaptation within countries’ national sustainable development contexts. Around 15 years after conducting the first TNA, its bottom-up paradigm was reflected in the Paris Agreement and the concept of NDCs. In their NDCs countries determine actions within their national contexts that contribute to the goal of limiting global warming to well below 2 °C and preferably below 1.5 °C. There are many potential interlinkages between TNAs and NDCs, as noted in earlier papers by the TEC. For example, TEC (2018) compares possible NDC design and implementation steps with those in the TNA guidance, concluding that outputs from one process could be used as inputs for the other. Recent synthesis reports on NDCs and TNAs highlight that the processes refer to each other in several ways. Most recent TNAs use a country’s NDC as a starting point for the analysis.
LINK
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations