Mild heat pasteurization, high pressure processing (HP) and pulsed electric field (PEF) processing of freshly squeezed orange juice were comparatively evaluated examining their impact on microbial load and quality parameters immediately after processing and during two months of storage. Microbial counts for treated juices were reduced beyond detectable levels immediately after processing and up to 2 months of refrigerated storage. Quality parameters such as pH, dry matter content and brix were not significantly different when comparing juices immediately after treatment and were, for all treatments, constant during storage time. Quality parameters related to pectinmethylesterase (PME) inactivation, like cloud stability and viscosity, were dependent on the specific treatments that were applied. Mild heat pasteurization was found to result in the most stable orange juice. Results for HP are nearly comparable to PEF except on cloud degradation, where a lower degradation rate was found for HP. For PEF, residual enzyme activity was clearly responsible for changes in viscosity and cloud stability during storage. Industrial relevance: Development of mild processing technologies with a minimal impact on fruit juice can be considered as a true alternative of fresh fruit. The present work presents a fair comparison of mild heat treated, high pressure (HP) and pulsed electric field (PEF) processed orange juice as an alternative for thermal pasteurization. Orange juices were monitored during two months of storage.
DOCUMENT
Food production has put enormous strain on the environment. Supply chain network design provides a means to frame this issue in terms of strategic decision making. It has matured from a field that addressed only operational and economic concerns to one that comprehensively considers the broader environmental and social issues that face industrial organizations of today. Adding the term “green” to supply chain activities seeks to incorporate environmentally conscious thinking in all processes in the supply chain. The methodology is based on the use of Life Cycle Assessment, Multi-objective Optimization via Genetic Algorithms and Multiple-criteria Decision Making tools (TOPSIS type). The approach is illustrated and validated through the development and analysis of an Orange Juice Supply Chain case study modelled as a three echelon GrSC composed of the supplier, manufacturing and market levels that in turn are decomposed into more detailed subcomponents. Methodologically, the work has shown the development of the modelling and optimization GrSCM framework is useful in the context of eco-labelled agro food supply chain and feasible in particular for the orange juice cluster. The proposed framework can help decision makers handle the complexity that characterizes agro food supply chain design decision and that is brought on by the multi-objective nature of the problem as well as by the multiple stakeholders, thus preventing to make the decision in a segmented empirical manner. Experimentally, under the assumptions used in the case study, the work highlights that by focusing only on the “organic” eco-label to improve the agricultural aspect, low to no improvement on overall supply chain environmental performance is reached in relative terms. In contrast, the environmental criteria resulting from a full lifecycle approach is a better option for future public and private policies to reach more sustainable agro food supply chains.
DOCUMENT
New consumer awareness is shifting industry towards more sustainable practices, creating a virtuous cycle between producers and consumers enabled by eco-labelling. Eco-labelling informs consumers of specific characteristics of products and has been used to market greener products. Eco-labelling in the food industry has yet been mostly focused on promoting organic farming, limiting the scope to the agricultural stage of the supply chain, while carbon labelling informs on the carbon footprint throughout the life cycle of the product. These labelling strategies help value products in the eyes of the consumer. Because of this, decision makers are motivated to adopt more sustainable models. In the food industry, this has led to important environmental impact improvements at the agricultural stage, while most other stages in the Food Supply Chain (FSC) have continued to be designed inefficiently. The objective of this work is to define a framework showing how carbon labelling can be integrated into the design process of the FSC. For this purpose, the concept of Green Supply Chain Network Design (GSCND) focusing on the strategic decision making for location and allocation of resources and production capacity is developed considering operational, financial and environmental (CO2 emissions) issues along key stages in the product life cycle. A multi-objective optimization strategy implemented by use of a genetic algorithm is applied to a case study on orange juice production. The results show that the consideration of CO2 emission minimization as an objective function during the GSCND process together with techno-economic criteria produces improved FSC environmental performance compared to both organic and conventional orange juice production. Typical results thus highlight the importance that carbon emissions optimization and labelling may have to improve FSC beyond organic labelling. Finally, CO2 emission-oriented labelling could be an important tool to improve the effects eco-labelling has on food product environmental impact going forward.
DOCUMENT
Every year, more than 400 million tons of plastic are produced worldwide. To overcome the problems for the environment development of degradable polymers and shift from fossil-based polymers to renewable plastics is needed. At the same time Europe wastes over five billion kilos of citrus peel every year. Most of this waste goes to incineration, where the valuable chemical components that the peel contains are lost forever. One of these components is limonene, a doubly unsaturated terpene which is the major component of orange oil (49%) and is therefore an abundantly available side product of the orange industry. PeelPioneers has developed a bio-refinery concept that turns citrus peel waste into valuable chemical compounds and products, one of these chemicals being limonene. PeelPioneers aims to use the extracted material as fully as possible to benefit circular economy and therefore wish to study the potential of limonene for developing a polymeric material, which can be used for packaging e.g. bottle or pack for freshly pressed orange juice. The Centre of Expertise of Biobased Economy of Avans University of Applied Sciences has carried out studies on polymerisation of limonene and limonene-like monomers. Therefore PeelPioneers and Avans Centre of Expertise of Biobased Economy decided to join their forces in this “From Peel To Bottle” project to study the potential and pathways to meet this goal.