Background:It is unclear why some physical activity (PA) mobile health (mHealth) interventions successfully promote PA whereas others do not. One possible explanation is the variety in PA mHealth interventions—not only do interventions differ in the selection of persuasive strategies but also the design and implementation of persuasive strategies can vary. However, limited studies have examined the different designs and technical implementations of strategies or explored if they indeed influenced the effectiveness of the intervention.Objective:This scoping review sets out to explore the different technical implementations and design characteristics of common and likely most effective persuasive strategies, namely, goal setting, monitoring, reminders, rewards, sharing, and social comparison. Furthermore, this review aims to explore whether previous mHealth studies examined the influence of the different design characteristics and technical operationalizations of common persuasive strategies on the effectiveness of the intervention to persuade the user to engage in PA.Methods:An unsystematic snowball and gray literature search was performed to identify the literature that evaluated the persuasive strategies in experimental trials (eg, randomized controlled trial, pre-post test). Studies were included if they targeted adults, if they were (partly) delivered by a mobile system, if they reported PA outcomes, if they used an experimental trial, and when they specifically compared the effect of different designs or implementations of persuasive strategies. The study methods, implementations, and designs of persuasive strategies, and the study results were systematically extracted from the literature by the reviewers.Results:A total of 29 experimental trials were identified. We found a heterogeneity in how the strategies are being implemented and designed. Moreover, the findings indicated that the implementation and design of the strategy has an influence on the effectiveness of the PA intervention. For instance, the effectiveness of rewarding was shown to vary between types of rewards; rewarding goal achievement seems to be more effective than rewarding each step taken. Furthermore, studies comparing different ways of goal setting suggested that assigning a goal to users might appear to be more effective than letting the user set their own goal, similar to using adaptively tailored goals as opposed to static generic goals. This study further demonstrates that only a few studies have examined the influence of different technical implementations on PA behavior.Conclusions:The different implementations and designs of persuasive strategies in mHealth interventions should be critically considered when developing such interventions and before drawing conclusions on the effectiveness of the strategy as a whole. Future efforts are needed to examine which implementations and designs are most effective to improve the translation of theory-based persuasive strategies into practical delivery forms.
Recently, there has been an increase in interest for the integration of insights from the behavioural sciences into the design process. The Persuasive by Design model aims to provide an evidence-based framework by which designers gain access to relevant theoretical insights from the behavioural sciences. This paper examines the use of the model in two case studies that dealt with complex behavioural change situations. In both studies, the model proved to be a valuable aid in determining target behaviours and operationalizing intervention concepts, especially in the early stages of the design process. Some shortcomings of the model also transpired. The model was seen as too complex, and its psychological frame does not prevent designers to overlook possible systemic moderators of behaviour. Implications for further development of tools that give access to model insights are discussed.
Background: Although physical activity (PA) has positive effects on health and well-being, physical inactivity is a worldwide problem. Mobile health interventions have been shown to be effective in promoting PA. Personalizing persuasive strategies improves intervention success and can be conducted using machine learning (ML). For PA, several studies have addressed personalized persuasive strategies without ML, whereas others have included personalization using ML without focusing on persuasive strategies. An overview of studies discussing ML to personalize persuasive strategies in PA-promoting interventions and corresponding categorizations could be helpful for such interventions to be designed in the future but is still missing. Objective: First, we aimed to provide an overview of implemented ML techniques to personalize persuasive strategies in mobile health interventions promoting PA. Moreover, we aimed to present a categorization overview as a starting point for applying ML techniques in this field. Methods: A scoping review was conducted based on the framework by Arksey and O’Malley and the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) criteria. Scopus, Web of Science, and PubMed were searched for studies that included ML to personalize persuasive strategies in interventions promoting PA. Papers were screened using the ASReview software. From the included papers, categorized by the research project they belonged to, we extracted data regarding general study information, target group, PA intervention, implemented technology, and study details. On the basis of the analysis of these data, a categorization overview was given. Results: In total, 40 papers belonging to 27 different projects were included. These papers could be categorized in 4 groups based on their dimension of personalization. Then, for each dimension, 1 or 2 persuasive strategy categories were found together with a type of ML. The overview resulted in a categorization consisting of 3 levels: dimension of personalization, persuasive strategy, and type of ML. When personalizing the timing of the messages, most projects implemented reinforcement learning to personalize the timing of reminders and supervised learning (SL) to personalize the timing of feedback, monitoring, and goal-setting messages. Regarding the content of the messages, most projects implemented SL to personalize PA suggestions and feedback or educational messages. For personalizing PA suggestions, SL can be implemented either alone or combined with a recommender system. Finally, reinforcement learning was mostly used to personalize the type of feedback messages. Conclusions: The overview of all implemented persuasive strategies and their corresponding ML methods is insightful for this interdisciplinary field. Moreover, it led to a categorization overview that provides insights into the design and development of personalized persuasive strategies to promote PA. In future papers, the categorization overview might be expanded with additional layers to specify ML methods or additional dimensions of personalization and persuasive strategies.