ID3AS is a programme in the field of sensor technology to stimulate innovation and network creation in the Eems Dollard Region (EDR), the most northern region along the Dutch-German border. The ID3AS-programme provided an opportunity for over 80 students with different backgrounds to participate on a scala of real world challenges. Real world learning environments like these are becoming increasingly popular in education, so it is important that we know how to organise the participation of students and tutors effectively.However, in ID3AS it proved challenging to realise a fruitful learning experience for the students, while simultaneously adding real value to the projects. The difficulty stems from the fact that both students and tutors struggle with the inherent unclarity of innovation projects, while at the same time industry partners need actual results. We think that the currently prevailing approach of the student learning by discovery, with the tutor in the role of process supervisor, is suboptimal in these conditions. Based on our experiences we propose to have students join a consortium as an 'apprentice’ to a ‘master’. The master, being a tutor from either university or company, should be comfortable with leading by example in an uncertain environment where both learning outcomes and concrete results are expected. We present several examples where this approach worked and give the outline of an experiment we plan to conduct on this topic.
DOCUMENT
In this paper, a general approach for modeling airport operations is presented. Airport operations have been extensively studied in the last decades ranging from airspace, airside and landside operations. Due to the nature of the system, simulation techniques have emerged as a powerful approach for dealing with the variability of these operations. However, in most of the studies, the different elements are studied in an individual fashion. The aim of this paper, is to overcome this limitation by presenting a methodological approach where airport operations are modeled together, such as airspace and airside. The contribution of this approach is that the resolution level for the different elements is similar therefore the interface issues between them is minimized. The framework can be used by practitioners for simulating complex systems like airspace-airside operations or multi-airport systems. The framework is illustrated by presenting a case study analyzed by the authors.
DOCUMENT
Organs-on-chips (OoCs) worden steeds belangrijker voor geneesmiddelonderzoek. Het kweken van miniatuurorganen in microfluïdische chips creëert een systeem waarmee geneesmiddelonderzoekers efficiënt geneesmiddelen kunnen testen. OoCs kunnen in de toekomst een belangrijk instrument voor personalized medicine worden: door het kweken van patiëntmateriaal in OoCs kan dan worden bepaald welke interventies voor specifieke patiënten werken en veilig zijn. In de huidige praktijk worden cellulaire veranderingen in OoCs na blootstelling aan een geneesmiddel doorgaans gevolgd met visualisatietechnieken, waarmee alleen effecten van geneesmiddelen kunnen worden waargenomen. Voor bepaling van de voor geneesmiddelonderzoek cruciale parameters absorptie, distributie, metabolisme en excretie (ADME) is het noodzakelijk om de concentraties van geneesmiddelen en hun relevante metabolieten te meten. Het doel van AC/OC is dit mogelijk te maken door het ontwikkelen van analytisch-chemische technieken, gebaseerd op vloeistofchromatografie gekoppeld met massaspectrometrie (LC-MS). Hiermee kunnen ontwikkelaars van OoCs (de eindgebruikers van AC/OC) de voordelen van hun producten voor geneesmiddelonderzoek beter onderbouwen. Dit project bouwt voort op twee KIEM-projecten, waarin enkele veelbelovende analytisch-chemische technieken succesvol zijn verkend. In AC/OC zullen wij: 1. analytisch-chemische methodes ontwikkelen die geschikt zijn om een breed scala aan geneesmiddelen en metabolieten te bepalen in meerdere types OoCs; 2. deze methodes verbeteren, zodat de analyse geautomatiseerd, sneller en gevoeliger wordt; 3. de potentie van deze methodes voor geneesmiddelonderzoek met OoCs demonsteren door ze toe te passen op enkele praktijkvraagstukken. Het OoC-veld ontwikkelt zich razendsnel en Nederland (georganiseerd binnen OoC-consortium hDMT) speelt daarin een belangrijke rol. AC/OC verbindt kennis en expertise op het gebied van analytische chemie, OoCs, celkweek en geneesmiddelonderzoek. Hierdoor kan AC/OC een bijdrage leveren aan sneller en betrouwbaarder geneesmiddelonderzoek. Met de ontwikkeling van een minor ‘OoC-Technology’, waarin we de onderzoeksresultaten vertalen naar onderwijs, spelen we in op de behoefte aan professionals met kennis, ervaring en belangstelling op het gebied van OoCs.
The increasing amount of electronic waste (e-waste) urgently requires the use of innovative solutions within the circular economy models in this industry. Sorting of e-waste in a proper manner are essential for the recovery of valuable materials and minimizing environmental problems. The conventional e-waste sorting models are time-consuming processes, which involve laborious manual classification of complex and diverse electronic components. Moreover, the sector is lacking in skilled labor, thus making automation in sorting procedures is an urgent necessity. The project “AdapSort: Adaptive AI for Sorting E-Waste” aims to develop an adaptable AI-based system for optimal and efficient e-waste sorting. The project combines deep learning object detection algorithms with open-world vision-language models to enable adaptive AI models that incorporate operator feedback as part of a continuous learning process. The project initiates with problem analysis, including use case definition, requirement specification, and collection of labeled image data. AI models will be trained and deployed on edge devices for real-time sorting and scalability. Then, the feasibility of developing adaptive AI models that capture the state-of-the-art open-world vision-language models will be investigated. The human-in-the-loop learning is an important feature of this phase, wherein the user is enabled to provide ongoing feedback about how to refine the model further. An interface will be constructed to enable human intervention to facilitate real-time improvement of classification accuracy and sorting of different items. Finally, the project will deliver a proof of concept for the AI-based sorter, validated through selected use cases in collaboration with industrial partners. By integrating AI with human feedback, this project aims to facilitate e-waste management and serve as a foundation for larger projects.
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.