Amsterdam Airport Schiphol has faced capacity constraints, particularly during peak periods. At the security screening checkpoint, this is due to the growing number of passengers and a shortage of security staff. To improve operating performance, there is a need to integrate newer technologies that improve passing times. This research presents a discrete event simulation (DES) model for the inclusion of a shoe scanner at the security screening checkpoint at Amsterdam Airport Schiphol. Simulation is a frequently used method to assess the influence of process changes, which, however, has not been applied for the inclusion of shoe scanners in airport security screenings yet. The simulation model can be used to assess the implementation and potential benefits of an optical shoe scanner, which is expected to lead to significant improvements in passenger throughput and a decrease in the time a passenger spends during the security screening, which could lead to improved passenger satisfaction. By leveraging DES as a tool for analysis, this study provides valuable insights for airport authorities and stakeholders aiming to optimize security screening operations and enhance passenger satisfaction.
DOCUMENT
COVID-19 arrived in the world suddenly and unexpectedly. It caused major disruptions at economical, operational and other levels. In the case of flight traffic, the operations were reduced to 10% of their original levels. The question after COVID-19 is how to restart the operations and how to keep the balance between safety and capacity. In this paper we present an analysis using simulation techniques for understanding the impact in a security area of an important airport in Latin America; the airport of Mexico City. The results allow to illustrate the potential congestion given by the implemented covid-19 restriction, even when the traffic recovers only by 25% of the pre-covid-19 traffic. The congestion can be mitigated by applying some layout changes (snake queue vs parallel queue) and when more capacity is added to the system (extra security line). The results will raise situational awareness for airport stakeholders when implementing the actions suggested by different international institutions like WHO, IATA or ICAO.
DOCUMENT
Air transportation has grown in an unexpected way during last decades and is expected to increase even more in the next years. Traffic growth tendencies forecast an expansion in the demand and greater aviation connectivity, but also higher workload to the different airspace users, especially for airport and services. Therefore, it is essential to employ strategies designed to use efficiently valuable corporate resource. Airport authorities around the world are investing in large capital projects, including new or improved runways, terminal expansions, and entirely new airports. However, this effort is sometimes limited due to their geographic location. In this work, two main objectives are pursued: first, to highlight the importance of the industry by exposing the current situation and future trends all over the world focusing in the Mexican industry; and second, to introduce a simulation model which can be used as a decision making tool for the upcoming demand. The analysis of the scenarios illustrates how to develop strategies to cope with the different airspace user's needs.
MULTIFILE