A short paper on the whats and the hows of learning technology standardization
DOCUMENT
Purpose: This is a position paper describing the elements of an international framework for assistive techhnology provision that could guide the development of policies, systems and service delivery procedures across the world. It describes general requirements, quality criteria and possible approaches that may help to enhance the accessibility of affordable and high quality assistive technology solutions. Materials and methods: The paper is based on the experience of the authors, an analysis of the existing literature and the inputs from many colleagues in the field of assistive technology provision. It includes the results of discussions of an earlier version of the paper during an international conference on the topic in August 2017. Results and conclusion: The paper ends with the recommendation to develop an international standard for assistive technology provision. Such a standard can have a major impact on the accessibility of AT for people with disabilities. The paper outlines some the key elements to be included in a standard.
DOCUMENT
In recent decades, technology has influenced various aspects of assessment in mathematics education: (1) supporting the assessment of higher-order thinking skills in mathematics, (2) representing authentic problems from the world around us to use and apply mathematical knowledge and skills, and (3) making the delivery of tests and the analysis of results through psychometric analysis more sophisticated. We argue that these developments are not pushing mathematics education in the same direction, however, which creates tensions. Mathematics education—so essential for educating young people to be creative and problem solving agents in the twenty-first century—is at risk of focusing too much on assessment of lower order goals, such as the reproduction of procedural, calculation based, knowledge and skills. While there is an availability of an increasing amount of sophisticated technology, the related advances in measurement, creation and delivery of automated assessments of mathematics are however being based on sequences of atomised test items. In this article several aspects of the use of technology in the assessment of mathematics education are exemplified and discussed, including in relation to the aforementioned tension. A way forward is suggested by the introduction of a framework for the categorisation of mathematical problem situations with an increasing sophistication of representing the problem situation using various aspects of technology. The framework could be used to reflect on and discuss mathematical assessment tasks, especially in relation to twenty-first century skills.
DOCUMENT
Over the last two decades, institutions for higher education such as universities and colleges have rapidly expanded and as a result have experienced profound changes in processes of research and organization. However, the rapid expansion and change has fuelled concerns about issues such as educators' technology professional development. Despite the educational value of emerging technologies in schools, the introduction has not yet enjoyed much success. Effective use of information and communication technologies requires a substantial change in pedagogical practice. Traditional training and learning approaches cannot cope with the rising demand on educators to make use of innovative technologies in their teaching. As a result, educational institutions as well as the public are more and more aware of the need for adequate technology professional development. The focus of this paper is to look at action research as a qualitative research methodology for studying technology professional development in HE in order to improve teaching and learning with ICTs at the tertiary level. The data discussed in this paper have been drawn from a cross institutional setting at Fontys University of Applied Sciences, The Netherlands. The data were collected and analysed according to a qualitative approach.
DOCUMENT
Assessment beschrijft kritische succesfactoren ten behoeve van ideale duurzame bedrijventerreinen en het belang van duurzaambouwen voor starters door middel van collectief particulier opdrachtgeverschap.
DOCUMENT
Why a position statement on Assessment in Physical Education? The purpose of this AIESEP Position Statement on Assessment in Physical Education (PE) is fourfold: • To advocate internationally for the importance of assessment practices as central to providing meaningful, relevant and worthwhile physical education; • To advise the field of PE about assessment-related concepts informed by research and contemporary practice; • To identify pressing research questions and avenues for new research in the area of PE assessment; • To provide a supporting rationale for colleagues who wish to apply for research funds to address questions about PE assessment or who have opportunities to work with or influence policy makers. The main target groups for this position statement are PE teachers, PE pre-service teachers, PE curriculum officers, PE teacher educators, PE researchers, PE administrators and PE policy makers. How was this position statement created? The AIESEP specialist seminar ‘Future Directions in PE Assessment’ was held from October 18-20 2018, at Fontys University of Applied Sciences in Eindhoven, the Netherlands. The seminar aimed to bring together leading scholars in the field to present and discuss ‘evidence-informed’ views on various topics around PE assessment. It brought together 71 experts from 20 countries (see appendix 2) to share research on PE assessment via keynote lectures and research presentations and to discuss assessment-related issues in interactive sessions. Input from this meeting informed a first draft version of the statement. This first draft was sent to all participants of the specialist seminar for feedback, from which a second draft was created. This draft was presented at the AIESEP International Conference 2019 in Garden City, New York, after which further feedback was collected from participants both on site and through an online survey. The main contributors to the writing of the position statement are mentioned in appendix 1. Approval was granted by the AIESEP Board on May 7th, 2020. Largely in keeping with the main themes of the AIESEP specialist seminar ‘Future Directions in PE Assessment’, this Position Statement is divided into the following sections: Assessment Literacy; Accountability & Policy; Instructional Alignment; Assessment for Learning; Physical Education Teacher Education (PETE) and Continuing Professional Development; Digital Technology in PE Assessment. These sections are preceded by a brief overview of research data on PE. The statement concludes with directions for future research.
DOCUMENT
Advanced technology is a primary solution for the shortage of care professionals and increasing demand for care, and thus acceptance of such technology is paramount. This study investigates factors that increase use of advanced technology during elderly care, focusing on current use of advanced technology, factors that influence its use, and care professionals’ experiences with the use. This study uses a mixed-method design. Logfiles were used (longitudinal design) to determine current use of advanced technology, questionnaires assessed which factors increase such use, and in-depth interviews were administered to retrieve care professionals’ experiences. Findings suggest that 73% of care professionals use advanced technology, such as camera monitoring, and consult clients’ records electronically. Six of nine hypotheses tested in this study were supported, with correlations strongest between performance expectancy and attitudes toward use, attitudes toward use and satisfaction, and effort expectancy and performance expectancy. Suggested improvements for advanced technology include expanding client information, adding report functionality, solving log-in problems, and increasing speed. Moreover, the quickest way to increase acceptance is by improving performance expectancy. Care professionals scored performance expectancy of advanced technology lowest, though it had the strongest effect on attitudes toward the technology.
DOCUMENT
In two projects I have experimented with student designing their own assessment. One project was for a minor with only a few participants, so suitable for the experiment. The other was a regular course with approximately 50 students where the assessment form was partially free. I have done this project for over more than 10 years now. In this project every project group of students gets the assignment to let the other students experience what they have learned in their project. We would like to discuss how we can give students the opportunity to design their own assessment and still measure intended learning outcomes. And how can we learn from different cultures (between programs, faculties, universities and countries) in facilitating students to design their own assessment. Besides, we think by giving students more control over their own learning we will challenge students to focus on thriving and not just surviving.
DOCUMENT
This study examines completion rate for a self-assessment survey designed to assess employees' digital skills levels in the workplace. The aim is to improve data quality by investigating completion of the survey. The study reviews the theoretical background related to self-assessment surveys and completion rate, and explores the influence of survey length and format in survey design on completion rate. The research design and data analysis are described in detail, with a focus on identifying factors that may influence completion rate. Results suggest that survey designers should consider using Likert scales to optimize completion rate and completion time. However, this study did not find a significant increase in completion rate as a result of motivation, which was claimed from the literature. The study concludes with implications for the design and implementation of self-assessment surveys in the workplace, including the importance of reducing length and complexity of survey items and questions.
DOCUMENT
Abstract: AI tools in radiology are revolutionising the diagnosis, evaluation, and management of patients. However, there is a major gap between the large number of developed AI tools and those translated into daily clinical practice, which can be primarily attributed to limited usefulness and trust in current AI tools. Instead of technically driven development, little effort has been put into value-based development to ensure AI tools will have a clinically relevant impact on patient care. An iterative comprehensive value evaluation process covering the complete AI tool lifecycle should be part of radiology AI development. For value assessment of health technologies, health technology assessment (HTA) is an extensively used and comprehensive method. While most aspects of value covered by HTA apply to radiology AI, additional aspects, including transparency, explainability, and robustness, are unique to radiology AI and crucial in its value assessment. Additionally, value assessment should already be included early in the design stage to determine the potential impact and subsequent requirements of the AI tool. Such early assessment should be systematic, transparent, and practical to ensure all stakeholders and value aspects are considered. Hence, early value-based development by incorporating early HTA will lead to more valuable AI tools and thus facilitate translation to clinical practice. Clinical relevance statement: This paper advocates for the use of early value-based assessments. These assessments promote a comprehensive evaluation on how an AI tool in development can provide value in clinical practice and thus help improve the quality of these tools and the clinical process they support. Key Points: Value in radiology AI should be perceived as a comprehensive term including health technology assessment domains and AI-specific domains. Incorporation of an early health technology assessment for radiology AI during development will lead to more valuable radiology AI tools. Comprehensive and transparent value assessment of radiology AI tools is essential for their widespread adoption.
DOCUMENT