This toolkit, originating from the research group Psychology for Sustainable Cities, Amsterdam University of Applied Sciences (AUAS), contains materials that help to promote behavioural change in relation to electric shared transport based in onstreet e-Mobility hubs (eHUBs). Behavioural knowledge is an essential ingredient for the successful implementation of eHUBs. Because behaviour is very dependent on the target group’s capabilities and motivation and on the social and physical context in which behaviour takes place, the research group has developed materials that municipalities can use to design a tailor-made eHUBs promotion intervention that suits their own situation. Therefore, practical examples and insights from earlier research are shared with regard to stimulating the use of eHUBs.
Standard mass-production is a well-known manufacturing concept. To make small quantities or even single items of a product according to user specifications at an affordable price, alternative agile production paradigms should be investigated and developed. The system presented in this article is based on a grid of cheap reconfigurable production units, called equiplets. A grid of these equiplets is capable to produce a variety of different products in parallel at an affordable price. The underlying agent-based software for this system is responsible for the agile manufacturing. An important aspect of this type of manufacturing is the transport of the products along the available equiplets. This transport of the products from equiplet to equiplet is quite different from standard production. Every product can have its own unique path along the equiplets. In this article several topologies are discussed and investigated. Also, the planning and scheduling in relation to the transport constraints is subject of this study. Some possibilities of realization are discussed and simulations are used to generate results with the focus on efficiency and usability for different topologies and layouts of the grid and its internal transport system. Closely related with this problem is the scheduling of the production in the grid. A discussion about the maximum achievable load on the production grid and its relation with the transport system is also included.
Standard mass-production is a well-known manufacturing concept. To make small quantities or even single items of a product according to user specifications at an affordable price, alternative agile production paradigms should be investigated and developed. The system presented in this paper is based on a grid of cheap reconfigurable production units, called equiplets. A grid of these equiplets is capable to produce a variety of different products in parallel at an affordable price. The underlying agent-based software for this system is responsible for the agile manufacturing. An important aspect of this type of manufacturing is the transport of the products along the available equiplets. This transport of the products from equiplet to equiplet is quite different from standard production. Every product can have its own unique path along the equiplets. In this paper several topologies are discussed and investigated. Also, the planning and scheduling in relation to the transport constraints is subject of this study. Some possibilities of realization are discussed and simulations are used to generate results with the focus on efficiency and usability for different topologies and layouts of the grid and its internal transport system.
Cross-Re-Tour supports European tourism SME while implementing digital and circular economy innovations. The three year project promotes uptake and replication by tourism SMEs of tools and solutions developed in other sectors, to mainstream green and circular tourism business operations.At the start of the project existing knowledge-gaps of tourism SMEs will be researched through online dialogues. This will be followed by a market scan, an overview of existing state of the art solutions to digital and green constraints in other economic sectors, which may be applied to tourism SME business operations: water, energy, food, plastic, transport and furniture /equipment. The scan identifies best practices from other sectors related to nudging of clients towards sustainable behaviour and nudging of staff on how to best engage with new tourism market segments.The next stage of the project relates to two design processes: an online diagnostic tool that allows for measuring and assessing (160) SME’s potential to adapt existing solutions in digital and green challenges, developed in other economic sectors. Next to this, a knowledge hub, addresses knowledge constraints and proposes solutions, business advisory services, training activities to SMEs participating. The hub acts as a matchmaker, bringing together 160 tourism SMEs searching for solutions, with suppliers of existing solutions developed in other sectors. The next key activity is a cross-domain open innovation programme, that will provide 80 tourism SMEs with financial support (up to EUR 30K). Examples of partnerships could be: a hotel and a supplier of refurbished matrasses for hospitals; a restaurant and a supplier of food rejected by supermarkets, a dance event organiser and a supplier of refurbished water bottles operating in the cruise industry, etc.The 80 cross-domain partnerships will be supported through the knowledge hub and their business innovation advisors. The goal is to develop a variety of innovative partnerships to assure that examples in all operational levels of tourism SMEs.The innovation projects shall be presented during a show-and-share event, combined with an investors’ pitch. The diagnostic tool, market scan, knowledge hub, as well as the show and share offer excellent opportunities to communicate results and possible impact of open innovation processes to a wider international audience of destination stakeholders and non-tourism partners. Societal issueSupporting the implementation of digital and circular economy solutions in tourism SMEs is key for its transition towards sustainable low-impact industry and society. Benefit for societySolutions are already developed in other sectors but the cross-over towards tourism is not happening. The project bridges this gap.
The projectThe overarching goal of DIGNITY, DIGital traNsport In and for socieTY, is to foster a sustainable, integrated and user-friendly digital travel eco-system that improves accessibility and social inclusion, along with the travel experience and daily life of all citizens. The project delves into the digital transport eco-system to grasp the full range of factors that might lead to disparities in the uptake of digitalised mobility solutions by different user groups in Europe. Analysing the digital transition from both a user and provider’s perspective, DIGNITY looks at the challenges brought about by digitalisation, to then design, test and validate the DIGNITY approach, a novel concept that seeks to become the ‘ABCs for a digital inclusive travel system’. The approach combines proven inclusive design methodologies with the principles of foresight analysis to examine how a structured involvement of all actors – local institutions, market players, interest groups and end users – can help bridge the digital gap by co-creating more inclusive mobility solutions and by formulating user-centred policy frameworks.The objectivesThe idea is to support public and private mobility providers in conceiving mainstream digital products or services that are accessible to and usable by as many people as possible, regardless of their income, social situation or age; and to help policy makers formulate long-term strategies that promote innovation in transport while responding to global social, demographic and economic changes, including the challenges of poverty and migration.The missionBy focusing on and involving end-users throughout the process of designing policies, products, or services, it is possible to reduce social exclusion while boosting new business models and social innovation. The end result that DIGNITY is aiming for is an innovative decision support tool that can help local and regional decision-makers formulate digitally inclusive policies and strategies, and digital providers design more inclusive products and services.The approachThe DIGNITY approach combines analysis with concrete actions to make digital mobility services inclusive over the long term. The approach connects users’ needs and requirements with the provision of mobility services, and at the same time connects those services to the institutional framework. It is a multi-phase process that first seeks to understand and bridge the digital gap, and then to test, evaluate and fine-tune the approach, so that it can be applied in other contexts even after the project’s end.Partners: ISINNOVA (Italy), Mobiel 21 (Belgium), Universitat Politechnica deCatalunya Spain), IZT (Germany), University of Cambridge (UK), Factualconsulting (Spain), Barcelona Regional Agencia (Spain), City of Tilburg(Netherlands), Nextbike (Germany), City of Ancona (Italy), MyCicero (Italy),Conerobus (Italy), Vlaams Gewest (Belgium)
In the road transportation sector, CO2 emission target is set to reduce by at least 45% by 2030 as per the European Green Deal. Heavy Duty Vehicles contribute almost quarter of greenhouse gas emissions from road transport in Europe and drive majorly on fossil fuels. New emission restrictions creates a need for transition towards reduced emission targets. Also, increasing number of emission free zones within Europe, give rise to the need of hybridization within the truck and trailer community. Currently, in majority of the cases the trailer units do not possess any kind of drivetrain to support the truck. Trailers carry high loads, such that while accelerating, high power is needed. On the other hand, while braking the kinetic energy is lost, which otherwise could be recaptured. Thus, having a trailer with electric powertrain can support the truck during traction and can charge the battery during braking, helping in reducing the emissions and fuel consumption. Using the King-pin, the amount of support required by trailer can be determined, making it an independent trailer, thus requiring no modification on the truck. Given the heavy-duty environment in which the King-pin operates, the measurement design around it should be robust, compact and measure forces within certain accuracy level. Moreover, modification done to the King-pin is not apricated. These are also the challenges faced by V-Tron, a leading company in the field of services in mobility domain. The goal of this project is to design a smart King-pin, which is robust, compact and provides force component measurement within certain accuracy, to the independent e-trailer, without taking input from truck, and investigate the energy management system of the independent e-trailer to explore the charging options. As a result, this can help reduce the emissions and fuel consumption.