Companies use crowdsourcing to solve specific problems or to search for innovation. By using open innovation platforms, where community members propose ideas, companies can better serve customer needs. So far, it remains unclear which factors influence idea implementation in crowd sourcing context. With the research idea that we present here, we aim to get a better understanding of the success and failure of ideas by examining relationships between characteristics of ideators, characteristics of ideas and the likelihood of implementation. In order to test the methodological approach that we propose in this paper in which we investigate for business relevant innovativeness as well as sentiment based on text analytics, data including unstructured text was mined from Dell IdeaStorm using webcrawling and scraping techniques. Some relevant hypotheses that we define in this paper were confirmed on the Dell IdeaStorm dataset but in order to generalize our findings we want to apply to the Leg o dataset in our current work in progress. Possible implications of our novel research idea can be used to fill theoretical gaps in marketing literature, help companies to better structure their search for innovation and for ideators to better understand factors contributing to successful idea generation.
DOCUMENT
The main goal of this study was to investigate if a computational analyses of text data from the National Student Survey (NSS) can add value to the existing, manual analysis. The results showed the computational analysis of the texts from the open questions of the NSS contain information which enriches the results of standard quantitative analysis of the NSS.
DOCUMENT
Objectives: Promoting unstructured outside play is a promising vehicle to increase children’s physical activity (PA). This study investigates if factors of the social environment moderate the relationship between the perceived physical environment and outside play. Study design: 1875 parents from the KOALA Birth Cohort Study reported on their child’s outside play around age five years, and 1516 parents around age seven years. Linear mixed model analyses were performed to evaluate (moderating) relationships among factors of the social environment (parenting influences and social capital), the perceived physical environment, and outside play at age five and seven. Season was entered as a random factor in these analyses. Results: Accessibility of PA facilities, positive parental attitude towards PA and social capital were associated with more outside play, while parental concern and restriction of screen time were related with less outside play. We found two significant interactions; both involving parent perceived responsibility towards child PA participation. Conclusion: Although we found a limited number of interactions, this study demonstrated that the impact of the perceived physical environment may differ across levels of parent responsibility.
MULTIFILE
Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiat- ing event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies (NAMs), which aim to reduce the use of animal testing for toxicology purposes. However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and infor- mation, from available literature to knowledge databases. Often, this information is in the form of free text, also called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious and increasingly time-consuming to process manually with the growing volume of data available. The advance- ment of machine learning provides alternative solutions to this challenge. To extract and organize information from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques. We review here some of the recent progress in the NLP field, and show how these techniques have already demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and reliably extract and combine relevant toxicological information from text. This data can be used to map underlying mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately allowing animal-free human-based hazard and risk assessment.
DOCUMENT
Analyzing historical decision-related data can help support actual operational decision-making processes. Decision mining can be employed for such analysis. This paper proposes the Decision Discovery Framework (DDF) designed to develop, adapt, or select a decision discovery algorithm by outlining specific guidelines for input data usage, classifier handling, and decision model representation. This framework incorporates the use of Decision Model and Notation (DMN) for enhanced comprehensibility and normalization to simplify decision tables. The framework’s efficacy was tested by adapting the C4.5 algorithm to the DM45 algorithm. The proposed adaptations include (1) the utilization of a decision log, (2) ensure an unpruned decision tree, (3) the generation DMN, and (4) normalize decision table. Future research can focus on supporting on practitioners in modeling decisions, ensuring their decision-making is compliant, and suggesting improvements to the modeled decisions. Another future research direction is to explore the ability to process unstructured data as input for the discovery of decisions.
MULTIFILE
Citizens regularly search the Web to make informed decisions on daily life questions, like online purchases, but how they reason with the results is unknown. This reasoning involves engaging with data in ways that require statistical literacy, which is crucial for navigating contemporary data. However, many adults struggle to critically evaluate and interpret such data and make data-informed decisions. Existing literature provides limited insight into how citizens engage with web-sourced information. We investigated: How do adults reason statistically with web-search results to answer daily life questions? In this case study, we observed and interviewed three vocationally educated adults searching for products or mortgages. Unlike data producers, consumers handle pre-existing, often ambiguous data with unclear populations and no single dataset. Participants encountered unstructured (web links) and structured data (prices). We analysed their reasoning and the process of preparing data, which is part of data-ing. Key data-ing actions included judging relevance and trustworthiness of the data and using proxy variables when relevant data were missing (e.g., price for product quality). Participants’ statistical reasoning was mainly informal. For example, they reasoned about association but did not calculate a measure of it, nor assess underlying distributions. This study theoretically contributes to understanding data-ing and why contemporary data may necessitate updating the investigative cycle. As current education focuses mainly on producers’ tasks, we advocate including consumers’ tasks by using authentic contexts (e.g., music, environment, deferred payment) to promote data exploration, informal statistical reasoning, and critical web-search skills—including selecting and filtering information, identifying bias, and evaluating sources.
LINK
The search for existing non-animal alternative methods for use in experiments is currently challenging because of the lack of both comprehensive structured databases and balanced keyword-based search strategies to mine unstructured textual databases. In this paper we describe 3Ranker, which is a fast, keyword-independent algorithm for finding non-animal alternative methods for use in biomedical research. The 3Ranker algorithm was created by using a machine learning approach, consisting of a Random Forest model built on a dataset of 35 million abstracts and constructed with weak supervision, followed by iterative model improvement with expert curated data. We found a satisfactory trade-off between sensitivity and specificity, with Area Under the Curve (AUC) values ranging from 0.85-0.95. Trials showed that the AI-based classifier was able to identify articles that describe potential alternatives to animal use, among the thousands of articles returned by generic PubMed queries on dermatitis and Parkinson's disease. Application of the classification models on time series data showed the earlier implementation and acceptance of Three Rs principles in the area of cosmetics and skin research, as compared to the area of neurodegenerative disease research. The 3Ranker algorithm is freely available at www.open3r.org; the future goal is to expand this framework to cover multiple research domains and to enable its broad use by researchers, policymakers, funders and ethical review boards, in order to promote the replacement of animal use in research wherever possible.
DOCUMENT
In this thesis several studies are presented that have targeted decision making about case management plans in probation. In a case management plan probation officers describe the goals and interventions that should help offenders stop reoffending, and the specific measures necessary to reduce acute risks of recidivism and harm. Such a plan is embedded in a judicial framework, a sanction or advice about the sanction in which these interventions and measures should be executed. The topic of this thesis is the use of structured decision support, and the question is if this can improve decision making about case management plans in probation and subsequently improve the effectiveness of offender supervision. In this chapter we first sketch why structured decision making was introduced in the Dutch probation services. Next we describe the instrument for risk and needs assessment as well as the procedure to develop case management plans that are used by the Dutch probation services and that are investigated in this thesis. Then we describe the setting of the studies and the research questions, and we conclude with an overview of this thesis.
DOCUMENT
Phd Thesis Higher professional education aims to prepare graduates for the complexity of professional practices. The development of conceptual understanding is important to deal adequately with this complexity, especially in an unstructured professional domain such as international business. The aim of this dissertation is to investigate the concept conceptual understanding in this professional domain, how it can be measured, what it looks like, how it changes, and in what ways it differs between students. The dissertation comprises five empirical studies for which data collection took place at a university of applied sciences in the Netherlands.
DOCUMENT
Background: Talking Mats is a framework developed to support communication with communication vulnerable people. Objective: The objective was twofold: to provide an overview of the objectives, target groups and settings for which Talking Mats has been used (Part 1), and an overview of empirical scientific knowledge on the use of Talking Mats (Part 2). Methods: In this scoping review scientific and grey literature was searched in PubMed, Cinahl, Psycinfo, Google, and Google Scholar. Articles that described characteristics of Talking Mats or its use were included. For Part 2, additional selection criteria were applied to focus on empirical scientific knowledge. Results: The search yielded 73 publications in Part 1, 12 of which were included in Part 2. Talking Mats was used for functional objectives (e.g. goal setting) and to improve communication and involvement. Part 2 showed that Talking Mats had positive influences on technical communication, effectiveness of conversations, and involvement and decision making in conversations. However, the level of research evidence is limited. Conclusions: Talking Mats can be used to support conversations between professionals and communication vulnerable people. More research is needed to study the views of people who are communication vulnerable and to study the effects of Talking Mats.
DOCUMENT