Developers of charging infrastructure, be it public or private parties, are highly dependent on accurate utilization data in order to make informed decisions where and when to expand charging points. The Amsterdam University of Applied Sciences, in close cooperation with the municipalities of Amsterdam, Rotterdam, The Hague, Utrecht, and the Metropolitan Region of Amsterdam Electric, developed both the back- and front-end of a charging infrastructure assessment platform that processes and represents real-life charging data. Charging infrastructure planning and design methods described in the literature use geographic information system data, traffic flow data of non-EV vehicles, or geographical distributions of, for example, refueling stations for combustion engine vehicles. Only limited methods apply real-life charging data. Rolling out public charging infrastructure is a balancing act between stimulating the transition to zero-emission transport by enabling (candidate) EV drivers to charge, and limiting costly investments in public charging infrastructure. Five key performance indicators for charging infrastructure utilization are derived from literature, workshops, and discussions with practitioners. The paper describes the Data Warehouse architecture designed for processing large amounts of charging data, and the web-based assessment platform by which practitioners get access to relevant knowledge and information about the current performance of existing charging infrastructure represented by the key performance indicators developed. The platform allows stakeholders in the decision-making process of charging point installation to make informed decisions on where and how to expand the already existing charging infrastructure. The results are generalizable beyond the case study regions in the Netherlands and can serve the roll-out of charging infrastructure, both public and semi-public, all over the world.
from the article: Abstract Based on a review of recent literature, this paper addresses the question of how urban planners can steer urban environmental quality, given the fact that it is multidimensional in character, is assessed largely in subjective terms and varies across time. The paper explores three questions that are at the core of planning and designing cities: ‘quality of what?’, ‘quality for whom?’ and ‘quality at what time?’ and illustrates the dilemmas that urban planners face in answering these questions. The three questions provide a novel framework that offers urban planners perspectives for action in finding their way out of the dilemmas identified. Rather than further detailing the exact nature of urban quality, these perspectives call for an approach to urban planning that is integrated, participative and adaptive. ; ; sustainable urban development; trade-offs; quality dimensions
Since 2012 the dutch metropolitan area (the metropole region of amsterdam, the city of amsterdam, rotterdam, the hague, utrecht ) cooperate in finding the best way to stimulate electric mobility through the implementation of a public charging infrastructure. with more than 5600 charge points and 1.6 million charge sessions in the last two years this is one of the most extensively used public charging infrastructure available worldwide. in this paper a benchmark study is carried out to identify different charge patterns between these 5 leading areas with an extensive public charging infrastructure to establish whether and how charge behaviour (e.g. charged volume, capacity utilization, unique users) differs between cities. based on the results first explanations for possible differences in charge patterns between cities will be provided. the study aims to contribute to a better understanding of the utilization of public charging infrastructure in a metropolitan area existing of four city centres and the amsterdam metropolitan area and to provide input for policy makers to prepare a public charging infrastructure ready for the projected growth of electric mobility in the next five years.
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.
There is increasing interest for the use of Virtual Reality (VR) in the field of sustainable transportation and urban development. Even though much has been said about the opportunities of using VR technology to enhance design and involve stakeholders in the process, implementations of VR technology are still limited. To bridge this gap, the urban intelligence team of NHTV Breda University of Applied Sciences developed CycleSPEX, a Virtual Reality (VR) simulator for cycling. CycleSpex enables researchers, planners and policy makers to shape a variety of scenarios around knowledge- and design questions and test their impact on users experiences and behaviour, in this case (potential) cyclists. The impact of infrastructure enhancements as well as changes in the surrounding built environment can be tested, analysed an evaluated. The main advantage for planners and policy makers is that the VR environment enables them to test scenarios ex-ante in a safe and controlled setting.“The key to a smart, healthy and safe urban environment lies in engaging mobility. Healthy cities are often characterized by high quality facilities for the active modes. But what contributes to a pleasant cycling experience? CycleSPEX helps us to understand the relations between cyclists on the move and (designed) urban environments”
The pipelines are buried structures. They move together with the soil during a seismic event. They are affected from ground motions. The project aims to find out the possible effects of Groningen earthquakes on pipelines of Loppersum and Slochteren.This project is devised for conducting an initial probe on the available data to see the possible actions that can be taken, initially on these two pilot villages, Loppersum and Slochteren, for detecting the potential relationship between the past damages and the seismic activity.Lifeline infrastructure, such as water mains and sewerage systems, covering our urbanised areas like a network, are most of the times, sensitive to seismic actions. This sensitivity can be in the form of extended damage during seismic events, or other collateral damages, such as what happened in Christchurch Earthquakes in 2011 in New Zealand when the sewerage system of the city was filled in with tonnes of sand due to liquefaction.Regular damage detection is one of key solutions for operational purposes. The earthquake mitigation, however, needs large scale risk studies with expected spatial distribution of damages for varying seismic hazard levels.