Objective: In myocardial perfusion single-photon emission computed tomography (SPECT), abdominal activity often interferes with the evaluation of perfusion in the inferior wall, especially after pharmacological stress. In this randomized study, we examined the effect of carbonated water intake versus still water intake on the quality of images obtained during myocardial perfusion images (MPI) studies. Methods: A total of 467 MIBI studies were randomized into a carbonated water group and a water group. The presence of intestinal activity adjacent to the inferior wall was evaluated by two observers. Furthermore, a semiquantitative analysis was performed in the adenosine subgroup,using a count ratio of the inferior myocardial wall and adjacent abdominal activity. Results: The need for repeated SPECT in the adenosine studies was 5.3 % in the carbonated water group versus 19.4 % in the still water group (p = 0.019). The inferior wall-to-abdomen count ratio was significantly higher in the carbonated water group compared to the still water group (2.11 ± 1.00 vs. 1.72 ± 0.73, p\0.001). The effect of carbonated water during rest and after exercise was not significant. Conclusions: This randomized study showed that carbonated water significantly reduced the interference of extra-cardiac activity in adenosine SPECT MPI. Keywords: Extra-cardiac radioactivity, Myocardial SPECT, Image quality enhancement, Carbonated water
Verslag van een verkenning naar de mogelijkheden voor publieke organisaties om aan de slag te gaan met het ‘strategy acceleration network’ van Kotter wanneer de flexibilisering van de traditionele organisatie tegen haar grenzen aanloopt.
LINK
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.
The Hospitality, Tourism, Innovation & Technology Experts Network (HTIT-EN) is a pivotal initiative aimed at unlocking societal impact potential. The Dutch hospitality and tourism sector, which employs over half a million individuals and annually hosts more than 40 million guests, ranks as the Netherlands’ 8th largest economic sector. However, this sector faces numerous challenges, including the uncertain impact of emerging technologies and issues such as unethical behavior, workforce attrition, and staff shortages, which have been exacerbated by the COVID-19 pandemic. The advent of emerging technologies like service robots, immersive experiences, and artificial intelligence has brought the sector to a critical juncture. These innovations pose significant disruptions, challenging the traditional concept of hospitality and questioning the positive societal impact in terms of ethical considerations, inclusivity, affordability, and data privacy.Strategically positioned to address these challenges, HTIT-EN focuses on leveraging emerging technologies to create impactful scenarios and shape the future of hospitality and tourism. Our motivation stems from the sector’s societal importance and its continuous influence on our daily lives. By harnessing technology and innovation, we aim to tackle industry-specific issues and extend the positive societal impact to related human-centered service industries.The overarching mission of HTIT-EN is to empower the Dutch Hospitality and Tourism sector to serve as a driving force for technology-enabled societal impact. The primary objective is to align research activities and promote collaboration. Key objectives include bringing together leading professors specializing in technology-driven impact within the hospitality and tourism sector, initiating research projects in line with a shared research agenda and in collaboration with local and international industry partners, and collaboratively developing expertise in emerging technologies that empower the role of hospitality and tourism as catalysts for societal impact. This endeavor contributes to the development and acceleration of the Knowledge and Innovation Agenda (KIA) ‘Key technologies’ & ‘Digitalization’. The aim is to foster an excellent reputation for Dutch hospitality and tourism as a global leader in technology-driven societal impact.We have strong support from CELTH, the Centre of Expertise within the domain of leisure, tourism and hospitality for the overall ambitions of the research project.Societal issueThe HTIT-EN project bridges societal importance and cross-cutting issues in the tourism and hospitality sectors. It’s fueled by the ambition to leverage emerging technologies to tackle industry-specific challenges, including knowledge and skills gaps, labor shortages and replacements, and evolving consumer expectations.Benefit to societyThe platform brings together professors and researchers from MBO, HBO and WO knowledge institutes as well as diverse set of professional partners to stimulate collaboration, align research lines and establish joint a joint research agenda on how technology-driven impact may become a catalyst within hospitality and tourism.
This top-up project is related to the on-going RAAK MKB-project SafeGo (Seismic Monitoring, Design And Strengthening For thE GrOningen Region) . SafeGo combines knowledge of SMEs in the earthquake region of Groningen with innovative solutions and demonstration of technologies, to improve the process of seismic strengthening of houses. Innovative methods and approaches for monitoring and strengthening of structures are tested and further developed in SafeGo In the monitoring part of the project, SafeGo combines soil data, structural data and the sensor data to reach conclusions for the reasons behind observed damages in buildings. Fraeylemaborg, a castle-museum in Slochteren dating back to the 14th century, is used as a testbed. Various sensors are used for monitoring accelerations, tilt and water pressure. In the strengthening part of the project, masonry walls were built and strengthened by the participating SMEs. These walls are placed on the shake table and tested with real earthquake vibrations. A shake table is an accurate laboratory equipment which simulates earthquakes. Majority of the tasks in SafeGo are related either to the site or to the laboratory, which are environments outside of the school. Although an intensive student participation was initially planned, this was not achieved due to COVID19 crisis and the series of mobility restrictions, neither in the monitoring nor in the shake table testing parts of the project. This top-up project aims to transfer the knowledge and create interaction with the students for the SafeGo project. Visitation to the monitored building and presentations to the students on the monitoring system, visitations to the shake table laboratory and interactive events are planned within this project.