Fingermarks have proven to play an important role in criminal investigations for identification purposes. However, in some cases, the donor of the fingermark is not disputed but the activity that led to the deposition of the fingermark is. In this article, the state-of-theart knowledge on evaluating fingermarks at activity level is discussed. First, the relevant variables that should be taken into account when evaluating fingermarks given activity level propositions are reviewed, followed by showing how such an evaluation could be performed using a Bayesian network. Finally, the main concerns and relevant discussions related to this topic are discussed.
DOCUMENT
In this paper, we describe a promising method to evaluate the location of fingermarks on two-dimensional objects, which provides valuable information for the evaluation of fingermarks at activity level. For this purpose, an experiment with pillowcases was conducted at the Dutch music festival Lowlands, to test whether the activity ‘smothering’ can be distinguished from an alternative activity like ‘changing a pillowcase’ based on the touch traces on pillowcases left by the activities. Participants performed two activities with paint on their hands: smothering a victim with the use of a pillow and changing a pillowcase of a pillow. The pillowcases were photographed and translated into grid representations. A binary classification model was used to classify the pillowcases into one of the two classes of smothering and changing, based on the distance between the grid representations. After applying the fitted model to a test set, we obtained an accuracy of 98.8%. The model showed that the pillowcases could be well separated into the two classes of smothering and changing, based on the location of the fingermarks. The proposed method can be applied to fingermark traces on all two-dimensional items for which we expect that different activities will lead to different fingermark locations.
DOCUMENT
Background Physical activity after bariatric surgery is associated with sustained weight loss and improved quality of life. Some bariatric patients engage insufficiently in physical activity. The aim of this study was to examine whether and to what extent both physical activity and exercise cognitions have changed at one and two years post-surgery, and whether exercise cognitions predict physical activity. Methods Forty-two bariatric patients (38 women, 4 men; mean age 38 ± 8 years, mean body mass index prior to surgery 47 ± 6 kg/m²), filled out self-report instruments to examine physical activity and exercise cognitions pre- and post surgery. Results Moderate to large healthy changes in physical activity and exercise cognitions were observed after surgery. Perceiving less exercise benefits and having less confidence in exercising before surgery predicted less physical activity two years after surgery. High fear of injury one year after surgery predicted less physical activity two years after surgery. Conclusion After bariatric surgery, favorable changes in physical activity and exercise cognitions are observed. Our results suggest that targeting exercise cognitions before and after surgery might be relevant to improve physical activity.
MULTIFILE
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Cross-Re-Tour supports European tourism SME while implementing digital and circular economy innovations. The three year project promotes uptake and replication by tourism SMEs of tools and solutions developed in other sectors, to mainstream green and circular tourism business operations.At the start of the project existing knowledge-gaps of tourism SMEs will be researched through online dialogues. This will be followed by a market scan, an overview of existing state of the art solutions to digital and green constraints in other economic sectors, which may be applied to tourism SME business operations: water, energy, food, plastic, transport and furniture /equipment. The scan identifies best practices from other sectors related to nudging of clients towards sustainable behaviour and nudging of staff on how to best engage with new tourism market segments.The next stage of the project relates to two design processes: an online diagnostic tool that allows for measuring and assessing (160) SME’s potential to adapt existing solutions in digital and green challenges, developed in other economic sectors. Next to this, a knowledge hub, addresses knowledge constraints and proposes solutions, business advisory services, training activities to SMEs participating. The hub acts as a matchmaker, bringing together 160 tourism SMEs searching for solutions, with suppliers of existing solutions developed in other sectors. The next key activity is a cross-domain open innovation programme, that will provide 80 tourism SMEs with financial support (up to EUR 30K). Examples of partnerships could be: a hotel and a supplier of refurbished matrasses for hospitals; a restaurant and a supplier of food rejected by supermarkets, a dance event organiser and a supplier of refurbished water bottles operating in the cruise industry, etc.The 80 cross-domain partnerships will be supported through the knowledge hub and their business innovation advisors. The goal is to develop a variety of innovative partnerships to assure that examples in all operational levels of tourism SMEs.The innovation projects shall be presented during a show-and-share event, combined with an investors’ pitch. The diagnostic tool, market scan, knowledge hub, as well as the show and share offer excellent opportunities to communicate results and possible impact of open innovation processes to a wider international audience of destination stakeholders and non-tourism partners. Societal issueSupporting the implementation of digital and circular economy solutions in tourism SMEs is key for its transition towards sustainable low-impact industry and society. Benefit for societySolutions are already developed in other sectors but the cross-over towards tourism is not happening. The project bridges this gap.
The pipelines are buried structures. They move together with the soil during a seismic event. They are affected from ground motions. The project aims to find out the possible effects of Groningen earthquakes on pipelines of Loppersum and Slochteren.This project is devised for conducting an initial probe on the available data to see the possible actions that can be taken, initially on these two pilot villages, Loppersum and Slochteren, for detecting the potential relationship between the past damages and the seismic activity.Lifeline infrastructure, such as water mains and sewerage systems, covering our urbanised areas like a network, are most of the times, sensitive to seismic actions. This sensitivity can be in the form of extended damage during seismic events, or other collateral damages, such as what happened in Christchurch Earthquakes in 2011 in New Zealand when the sewerage system of the city was filled in with tonnes of sand due to liquefaction.Regular damage detection is one of key solutions for operational purposes. The earthquake mitigation, however, needs large scale risk studies with expected spatial distribution of damages for varying seismic hazard levels.