Since the first release of modern electric vehicles, researchers and policy makers have shown interest in the deployment and utilization of charging infrastructure. Despite the sheer volume of literature, limited attention has been paid to the characteristics and variance of charging behavior of EV users. In this research, we answer the question: which scientific approaches can help us to understand the dynamics of charging behavior in charging infrastructures, in order to provide recommendations regarding a more effective deployment and utilization of these infrastructures. To do so, we propose a conceptual model for charging infrastructure as a social supply–demand system and apply complex system properties. Using this conceptual model, we estimate the rate complexity, using three developed ratios that relate to the (1) necessity of sharing resources, (2) probabilities of queuing, and (3) cascading impact of transactions on others. Based on a qualitative assessment of these ratios, we propose that public charging infrastructure can be characterized as a complex system. Based on our findings, we provide four recommendations to policy makers for taking efforts to reduce complexity during deployment and measure interactions between EV users using systemic metrics. We further point researchers and policy makers to agent-based simulation models that capture interactions between EV users and the use complex network analysis to reveal weak spots in charging networks or compare the charging infrastructure layouts of across cities worldwide.
Deployment and management of environmental infrastructures, such as charging infrastructure for Electric Vehicles (EV), is a challenging task. For policy makers, it is particularly difficult to estimate the capacity of current deployed public charging infrastructure for a given EV user population. While data analysis of charging data has shown added value for monitoring EV systems, it is not valid to linearly extrapolate charging infrastructure performance when increasing population size.We developed a data-driven agent-based model that can explore future scenarios to identify non-trivial dynamics that may be caused by EV user interaction, such as competition or collaboration, and that may affect performance metrics. We validated the model by comparing EV user activity patterns in time and space.We performed stress tests on the 4 largest cities the Netherlands to explore the capacity of the existing charging network. Our results demonstrate that (i) a non-linear relation exists between system utilization and inconvenience even at the base case; (ii) from 2.5x current population, the occupancy of non-habitual charging increases at the expense of habitual users, leading to an expected decline of occupancy for habitual users; and (iii) from a ratio of 0.6 non-habitual users to habitual users competition effects intensify. For the infrastructure to which the stress test is applied, a ratio of approximately 0.6 may indicate a maximum allowed ratio that balances performance with inconvenience. For policy makers, this implies that when they see diminishing marginal performance of KPIs in their monitoring reports, they should be aware of potential exponential increase of inconvenience for EV users.
Nowadays the main airports throughout the world are suffering because their capacity are getting close to saturation due to the air traffic which is still increasing besides the economic crisis and oil prices. In addition, the forecasts predict an increase in air traffic of at least 3.6% until 2020. This situation makes very important to come up with solutions to alleviate capacity congestions in the main airports throughout the world. Capacity has been perceived traditionally as the factor to be addressed in airport systems and it is faced through a technical perspective. In this paper we propose to change the mind-set and view capacity of airport systems taking other factors than pure technical ones. The discussion is illustrated with the example of Schiphol Airport.
MULTIFILE
The maximum capacity of the road infrastructure is being reached due to the number of vehicles that are being introduced on Dutch roads each day. One of the plausible solutions to tackle congestion could be efficient and effective use of road infrastructure using modern technologies such as cooperative mobility. Cooperative mobility relies majorly on big data that is generated potentially by millions of vehicles that are travelling on the road. But how can this data be generated? Modern vehicles already contain a host of sensors that are required for its operation. This data is typically circulated within an automobile via the CAN bus and can in-principle be shared with the outside world considering the privacy aspects of data sharing. The main problem is, however, the difficulty in interpreting this data. This is mainly because the configuration of this data varies between manufacturers and vehicle models and have not been standardized by the manufacturers. Signals from the CAN bus could be manually reverse engineered, but this process is extremely labour-intensive and time-consuming. In this project we investigate if an intelligent tool or specific test procedures could be developed to extract CAN messages and their composition efficiently irrespective of vehicle brand and type. This would lay the foundations that are required to generate big data-sets from in-vehicle data efficiently.
The livability of the cities and attractiveness of our environment can be improved by smarter choices for mobility products and travel modes. A change from current car-dependent lifestyles towards the use of healthier and less polluted transport modes, such as cycling, is needed. With awareness campaigns, cycling facilities and cycle infrastructure, the use of the bicycle will be stimulated. But which campaigns are effective? Can we stimulate cycling by adding cycling facilities along the cycle path? How can we design the best cycle infrastructure for a region? And what impact does good cycle infrastructure have on the increase of cycling?To find answers for these questions and come up with a future approach to stimulate bicycle use, BUas is participating in the InterReg V NWE-project CHIPS; Cycle Highways Innovation for smarter People transport and Spatial planning. Together with the city of Tilburg and other partners from The Netherlands, Belgium, Germany and United Kingdom we explore and demonstrate infrastructural improvements and tackle crucial elements related to engaging users and successful promotion of cycle highways. BUas is responsible for the monitoring and evaluation of the project. To measure the impact and effectiveness of cycle highway innovations we use Cyclespex and Cycleprint.With Cyclespex a virtual living lab is created which we will use to test several readability and wayfinding measures for cycle infrastructure. Cyclespex gives us the opportunity to test different scenario’s in virtual reality that will help us to make decisions about the final solution that will be realized on the cycle highway. Cycleprint will be used to develop a monitoring dashboard where municipalities of cities can easily monitor and evaluate the local bicycle use.
DISCO aims at fast-tracking upscaling to new generation of urban logistics and smart planning unblocking the transition to decarbonised and digital cities, delivering innovative frameworks and tools, Physical Internet (PI) inspired. To this scope, DISCO will deploy and demonstrate innovative and inclusive urban logistics and planning solutions for dynamic space re-allocation integrating urban freight at local level, within efficiently operated network-of-networks (PI) where the nodes and infrastructure are fixed and mobile based on throughput demands. Solutions are co-designed with the urban logistics community – e.g., cities, logistics service providers, retailers, real estate/public and private infrastructure owners, fleet owners, transport operators, research community, civil society - all together moving a paradigm change from sprawl to data driven, zero-emission and nearby-delivery-based models.