Key to reinforcement learning in multi-agent systems is the ability to exploit the fact that agents only directly influence only a small subset of the other agents. Such loose couplings are often modelled using a graphical model: a coordination graph. Finding an (approximately) optimal joint action for a given coordination graph is therefore a central subroutine in cooperative multi-agent reinforcement learning (MARL). Much research in MARL focuses on how to gradually update the parameters of the coordination graph, whilst leaving the solving of the coordination graph up to a known typically exact and generic subroutine. However, exact methods { e.g., Variable Elimination { do not scale well, and generic methods do not exploit the MARL setting of gradually updating a coordination graph and recomputing the joint action to select. In this paper, we examine what happens if we use a heuristic method, i.e., local search, to select joint actions in MARL, and whether we can use outcome of this local search from a previous time-step to speed up and improve local search. We show empirically that by using local search, we can scale up to many agents and complex coordination graphs, and that by reusing joint actions from the previous time-step to initialise local search, we can both improve the quality of the joint actions found and the speed with which these joint actions are found.
LINK
Circular solutions require a systemic approach involving multiple actors within and across industrial sectors. This has implications for the structure and dynamics within geographically bounded entrepreneurial ecosystems. Actors within the entrepreneurial ecosystem assume the role of ‘system coordination’ but very little is known about this role. As circular solutions and transformations cannot be realized in isolation, a better understanding of this coordination role is pertinent, which actors perform it and the strategies they use to overcome challenges. We conduct a comparative study of two sectoral cases in the Netherlands. Our preliminary findings from the case on circular textiles shows that coordination is distributed among several and diverse ecosystem actors to close technical material flows, whereas our preliminary findings in agri-food show that coordination is concentrated among actors that explicitly assume the coordination role to close biological material flows. We intend to make novel contributions to the literature on circular economy business transformation and entrepreneurial ecosystems as well as provide insights on the system coordination role for policy makers and practitioners.
DOCUMENT
This paper argues online privacy controls are based on a transactional model of privacy, leading to a collective myth of consensual data practices. It proposes an alternative based on the notion of privacy coordination as an alternative vision and realizing this vision as a grand challenge in Ethical UX
DOCUMENT
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
The CARTS (Collaborative Aerial Robotic Team for Safety and Security) project aims to improve autonomous firefighting operations through an collaborative drone system. The system combines a sensing drone optimized for patrolling and fire detection with an action drone equipped for fire suppression. While current urban safety operations rely on manually operated drones that face significant limitations in speed, accessibility, and coordination, CARTS addresses these challenges by creating a system that enhances operational efficiency through minimal human intervention, while building on previous research with the IFFS drone project. This feasibility study focuses on developing effective coordination between the sensing and action drones, implementing fire detection and localization algorithms, and establishing parameters for autonomous flight planning. Through this innovative collaborative drone approach, we aim to significantly improve both fire detection and suppression capabilities. A critical aspect of the project involves ensuring reliable and safe operation under various environmental conditions. This feasibility study aims to explore the potential of a sensing drone with detection capabilities while investigating coordination mechanisms between the sensing and action drones. We will examine autonomous flight planning approaches and test initial prototypes in controlled environments to assess technical feasibility and safety considerations. If successful, this exploratory work will provide valuable insights for future research into autonomous collaborative drone systems, currently focused on firefighting. This could lead to larger follow-up projects expanding the concept to other safety and security applications.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.