Deze lectorale rede gaat over een recente ontwikkeling die haar intrede heeft gedaan in het basisonderwijs: het opbrengstgericht werken. In de rede wordt eerst gekeken naar de methodiek van opbrengstgericht werken op schoolniveau en op klassenniveau. Als een school opbrengstgericht gaat werken, heeft dat ook gevolgen voor de leraar en de klas. In het tweede deel van de lectorale rede wordt dan ook ingegaan op de kwaliteit van de leraar die nodig is voor het goed opbrengstgericht kunnen werken en wordt een werkmodel gepresenteerd om de kwaliteit van de leraar te bestuderen. Tot slot wordt aandacht besteed aan de wijze waarop het lectoraat Leren en Innoveren een bijdrage levert aan de kwaliteit van leraren in opleiding en leraren die reeds werkzaam zijn in het basisonderwijs.
The Technical Manual for the digital evaluation tool QualiTePE supports users of the QualiTePE tool in creating, conducting and analysing evaluations to record the quality of teaching in physical education. The information on the General Data Protection Regulation (GDPR) instructs users on how to anonymise the data collection of evaluations and which legal bases apply with regard to the collection of personal data. The technical manual for the digital evaluation tool QualiTePE and the information on the General Data Protection Regulation (GDPR) are available in English, German, French, Italian, Spanish, Dutch, Swedish, Slovenian, Czech and Greek.
Dit project draagt bij aan het versterken van “de kennisketen van de Drentse vrijetijdseconomie”. De kennisketen wordt onder meer gevormd door kennisinstellingen, brancheverenigingen, overheden, bancaire instellingen, ondernemers en loopt van vergaren en verzamelen van data en kennis tot het ontsluiten ervan naar gebruikers. Het project beoogd de volgende doelen: Inventarisatie van het data-aanbod in Drenthe bij diverse partijen Inventarisatie van hoe partijen in het domein VTE de data-behoefte prioriteren. Input leveren voor de verdere uitbouw van de kennisketen in de context van Leisure Valley Drenthe.
De glastuinbouw in Nederland is wereldwijd toonaangevend en loopt voorop in automatisering en data-gedreven bedrijfsvoering. Voor de data-gedreven teelt wordt, naast het monitoren van de kas-parameters ook het monitoren van gewasparameters steeds meer gevraagd. De sector is daarbij vooral geïnteresseerd in niet-destructieve, contactloze en persoonsonafhankelijk monitoring van gewassen. Optische sensortechnologie, zoals spectrale afbeeldingstechnologie, kan veel waardevolle informatie opleveren over de staat van een gewas of vrucht, bijvoorbeeld over het suikergehalte, maar ook de aanwezigheid van plantziektes of insecten. Echter is dit vaak een te kostbare oplossing voor zowel de technologiebedrijven die oplossingen leveren als voor de telers zelf. In dit project onderzoeken wij de mogelijkheid om spectrale beeldvorming tegen lagere kosten te realiseren. Het beoogde resultaat is een prototype van een instrument dat tegen lage kosten met spectrale beeldvorming een of meerdere gewaseigenschappen kan kwantificeren. Realisatie van dit prototype heeft een sterke Fotonica-component (expertise Haagse Hogeschool) maakt gebruik van Machine Learning (expertise perClass) en is bedoeld voor toepassing op scout robots in de glastuinbouw (expertise Mythronics). Een betaalbare oplossing betekent in potentie voor de teler een betere controle over kwaliteit van het gewas en automatisering voor detectie van ziekte-uitbraken. Bij een succesvol prototype kan deze innovatie leiden tot betere voedselkwaliteit en minder verspilling in de glastuinbouw.
Blessures zijn één van de grootste problemen in de paralympische sport. Niet alleen is het aantal blessures hoog, maar ook de impact in het dagelijks leven is groot. In gesprekken met de beroepspraktijk (sporters, coaches, Embedded Scientist) komt de urgentie van dit probleem met name naar voren bij rolstoelsporters. In dit geval kan een blessure namelijk een acute bedreiging vormen voor de zelfredzaamheid, omdat zij in het dagelijks leven ook afhankelijk zijn van de rolstoel. Helaas is het voorkomen van blessures op dit moment moeilijk door de verscheidenheid aan blessures en onduidelijkheid over wat de oorzaken van deze blessures zijn. Hierbij speelt de complexiteit van het probleem een grote rol omdat allerlei factoren belangrijk kunnen zijn, zoals onder andere de belasting in het dagelijks leven, mentale aspecten en de slaapkwaliteit van de atleten. In dit project willen we de eerste stappen zetten om te achterhalen wat de risicofactoren zijn voor het oplopen van een overbelastingsblessure in rolstoelsporten. Om dit bereiken stellen we een integrale en data gedreven aanpak voor, waar Artificiële Intelligentie en Data Science een essentiële rol spelen. Op deze manier willen we de invloed van alle aspecten tegelijk bekijken en ook de mogelijke wisselwerkingen tussen de potentiële risicofactoren. In samenwerking met praktijkpartners, kennisinstellingen en bedrijven willen we verkennen wat noodzakelijk is voor onze integrale aanpak van blessurepreventie in rolstoelsporten. De opbrengst van dit project is een ingediende vervolgaanvraag met een goed afgebakende onderzoeksvraag en een sterk consortium. Ook zal een data-infrastructuur worden ontwikkeld, die gebruiksvriendelijk is voor de rolstoelsporter en de data gedreven aanpak naar blessurepreventie mogelijk maakt.
Noord-Nederland telt ongeveer 70.000 ha akkerbouw, waarvan 14.000 ha pootaardappelen. De totale jaaromzet van de pootaardappelteelt bedraagt ongeveer 230 miljoen euro (exclusief de omzet van toeleverende en dienstverlenende bedrijven). Van alle productielanden samen, neemt Noord-Nederland met 23% van de wereldwijde export van gecertificeerd pootgoed een absolute toppositie in. Om deze toppositie te behouden, is continu aandacht voor productiviteit, duurzaamheid en kwaliteitsverbetering vereist. Bij de huidige bedrijfsomvang kan een geautomatiseerde gewasinspectie daarbij zeer behulpzaam zijn. Kwalitatief hoogwaardiger inspectie tegen lagere kosten kan de kwaliteit en de kostprijs van gewassen in de precisielandbouw verbeteren. Voor pootgoedtelers is het belangrijk te weten wat de kwaliteit van de plant is, in relatie met de gepote aardappel. Doelstelling is het verkrijgen van inzicht in de methoden, technieken en algoritmen die nodig zijn voor het automatisch bepalen van het opkomstgedrag van individuele aardappelplanten met behulp van low-cost drones. Koelhuis Bergmans stelt de akkervelden waar opnames van gemaakt worden beschikbaar. Ana Vita heeft veel ervaring in het ontwikkelen van nieuwe markten in de precisielandbouw. De NHL is in het bezit van een ROC-light ontheffing om met drones tot 4 kg te mogen vliegen. Tevens onderzoekt de NHL welke methoden, technieken en algoritmen gebruikt kunnen worden. Dit project levert een dataset met hierin periodiek opgenomen beelden van aardappelplanten, methodes voor het bepalen van individuele aardappelplantgroei en een beschrijving van de onderzoeksresultaten in de vorm van een (wetenschappelijke) paper.