Dit project draagt bij aan het versterken van “de kennisketen van de Drentse vrijetijdseconomie”. De kennisketen wordt onder meer gevormd door kennisinstellingen, brancheverenigingen, overheden, bancaire instellingen, ondernemers en loopt van vergaren en verzamelen van data en kennis tot het ontsluiten ervan naar gebruikers. Het project beoogd de volgende doelen: Inventarisatie van het data-aanbod in Drenthe bij diverse partijen Inventarisatie van hoe partijen in het domein VTE de data-behoefte prioriteren. Input leveren voor de verdere uitbouw van de kennisketen in de context van Leisure Valley Drenthe.
Hoe overbruggen we de kloof tussen accountant en dataspecialist? Na ruim twee jaar is het tijd voor deel 3 van een serie artikelen over data-analyse. In het eerste artikel werd de buitenste ring van het 'VTAmodel' toegelicht en in het tweede artikel de twee binnenste ringen. Nu worden de toepassingen van het VTA-model besproken.
De ontwikkelingen rondom toekomstige slimme steden worden in de lokale en regionale media maar mondjesmaat belicht. Als er over digitale ontwikkelingen geschreven wordt is dat met name positief gekleurd, zo blijkt althans uit het onderzoek Slimme Luis in een Digitale Pels dat het lectoraat Fontys Journalistiek & Verantwoorde Innovatie en het Fontys ICT lectoraat AI & Big Data afgelopen jaar uitvoerden met steun van het onderzoeksprogramma TEC-for Society (Fontys).
Communicatieprofessionals geven aan dat organisaties geconfronteerd worden met een almaar complexere samenleving en daarmee het overzicht verloren hebben. Zo’n overzicht, een ‘360 graden blik’, is echter onontbeerlijk. Dit vooral, aldus diezelfde communicatieprofessionals, omdat dan eerder kan worden opgemerkt wanneer de legitimiteit van een organisatie ter discussie staat en zowel tijdiger als adequater gereageerd kan worden. Op dit moment is het echter nog zo dat een reactie pas op gang komt als zaken reeds in een gevorderd stadium verkeren. Onderstromen blijven onderbelicht, als ze niet al geheel onzichtbaar zijn. Een van de verklaringen hiervoor is de grote rol van sociale media in de publieke communicatie van dit moment. Die media produceren echter zoveel data dat communicatieprofessionals daartegenover machteloos staan. De enige oplossing is automatisering van de selectie en analyse van die data. Helaas is men er tot op heden nog niet in geslaagd een brug te slaan tussen het handwerk van de communicatieprofessional en de vele mogelijkheden van een datagedreven aanpak. Deze brug dan wel de vertaling van de huidige praktijk naar een hogere technisch niveau staat centraal in dit onderzoeksproject. Daarbij gaat het in het bijzonder om een vroegtijdige herkenning van potentiële issues, in het bijzonder met betrekking tot geruchtvorming en oproepen tot mobilisatie. Met discoursanalyse, AI en UX Design willen we interfaces ontwikkelen die zicht geven op die onderstromen. Daarbij worden transcripten van handmatig gecodeerde discoursanalytische datasets ingezet voor AI, in het bijzonder voor de clustering en classificatie van nieuwe data. Interactieve datavisualisaties maken die datasets vervolgens beter doorzoekbaar terwijl geautomatiseerde patroon-classificaties de communicatieprofessional in staat stellen sociale uitingen beter in te schatten. Aldus wordt richting gegeven aan handelingsperspectieven. Het onderzoek voorziet in de oplevering van een high fidelity ontwerp en een handleiding plus training waarmee analisten van newsrooms en communicatieprofessionals daadwerkelijk aan de slag kunnen gaan.
Artificial Intelligence (AI) wordt realiteit. Slimme ICT-producten die diensten op maat leveren accelereren de digitalisering van de maatschappij. De grote innovaties van de komende jaren –zelfrijdende auto’s, spraakgestuurde virtuele assistenten, autodiagnose systemen, robots die autonoom complexe taken uitvoeren – zijn datagedreven en hebben een AI-component. Dit gaat de rol van professionals in alle domeinen, gezondheidzorg, bouwsector, financiële dienstverlening, maakindustrie, journalistiek, rechtspraak, etc., raken. ICT is niet meer volgend en ondersteunend (een ‘enabling’ technologie), maar de motor die de transformatie van de samenleving in gang zet. Grote bedrijven, overheidsinstanties, het MKB, en de vele startups in de Brainport regio zijn innovatieve datagedreven scenario’s volop aan het verkennen. Dit wordt nog eens versterkt door de democratisering van AI; machine learning en deep learning algoritmes zijn beschikbaar zowel in open source software als in Cloud oplossingen en zijn daarmee toegankelijk voor iedereen. Data science wordt ‘applied’ en verschuift van een PhD specialisme naar een HBO-vaardigheid. Het stadium waarin veel bedrijven nu verkeren is te omschrijven als: “Help, mijn AI-pilot is succesvol. Wat nu?” Deze aanvraag richt zich op het succesvol implementeren van AI binnen de context van softwareontwikkeling. De onderzoeksvraag van dit voorstel is: “Hoe kunnen we state-of-the-art data science methoden en technieken waardevol en verantwoord toepassen ten behoeve van deze slimme lerende ICT-producten?” De postdoc gaat fungeren als een linking pin tussen alle onderzoeksprojecten en opdrachten waarbij studenten ICT-producten met AI (machine learning, deep learning) ontwikkelen voor opdrachtgevers uit de praktijk. Door mee te kijken en mee te denken met de studenten kan de postdoc overzicht en inzicht creëren over alle cases heen. Als er overzicht is kan er daarna ook gestuurd worden op de uit te voeren cases om verschillende deelaspecten samen met de studenten te onderzoeken. Deliverables zijn rapporten, guidelines en frameworks voor praktijk en onderwijs, peer-reviewed artikelen en kennisdelingsevents.
Een geschatte hoeveelheid van tussen de 35 en 140 miljoen kilo zwerfafval wordt jaarlijks in Nederland op straat of in de natuur aangetroffen. Gemeenten zijn verantwoordelijk voor het voorkomen en opruimen van zwerfafval. Daarom heeft bijvoorbeeld gemeente Breda de ambitie uitgesproken om de stad in 2030 zwerfafval vrij te hebben. Deze ambitieuze doelstelling moet bereikt worden door acties zowel op het vlak van preventie, als het opruimen en het hergebruik. Om deze acties kwantitatief te onderbouwen en te monitoren zijn gegevens over ligging, hoeveelheid en samenstelling van het zwerfafval noodzakelijk. Het is momenteel al mogelijk om zwerfafvaldata te verkrijgen om analyses op te verrichten. Deze data is afkomstig van vrijwilligers die middels apps als Litterati zwerfafval verzamelen en classificeren (labelen). Het toekennen van een label is een tijdrovende klus en levert maar een beperkt beeld van de totale hoeveelheid zwerfafval in een gemeente. Dit classificeren kan geautomatiseerd worden door object detectie algoritmen welke zijn getraind op afbeeldingen van zwerfafval. Om een groter gebied te monitoren zijn camerasystemen ontwikkeld die in staat zijn zwerfafval automatisch te detecteren. Technisch gezien zijn er steeds meer oplossingen om automatisch zwerfafval in kaart te brengen en te classificeren, maar een praktijkgerichte oplossing voor bijvoorbeeld beleidsmakers zonder technische kennis ontbreekt nog. In dit toegepast ontwerponderzoek werken we samen met gemeente Breda, gemeente ‘s-Hertogenbosch, stichting GoClean, Natuur- en milieuvereniging Markkant, stichting Nederland Schoon, de Antea Group en betrokken MKB-ers aan het antwoord op de onderzoeksvraag “Hoe kan zwerfafval in de openbare ruimte automatisch gedetecteerd en geclassificeerd worden vanuit verschillende, onafhankelijke bronnen met een zo beperkt mogelijke tijdsinvestering van de mens in dit proces.” De technische componenten die hiervoor nodig zijn worden samengevoegd in een gebruiksvriendelijk dataplatform. Op basis van de uitkomsten kunnen gemeenten (en andere publieke partijen) in Nederland datagedreven interventies ontwikkelen om zwerfafval tegen te gaan.