Publinova logo

Zoekresultaten

Producten 1.135

product

Reasoning like a doctor or like a nurse? A systematic integrative review

When physicians and nurses are looking at the same patient, they may not see the same picture. If assuming that the clinical reasoning of both professions is alike and ignoring possible differences, aspects essential for care can be overlooked. Understanding the multifaceted concept of clinical reasoning of both professions may provide insight into the nature and purpose of their practices and benefit patient care, education and research. We aimed to identify, compare and contrast the documented features of clinical reasoning of physicians and nurses through the lens of layered analysis and to conduct a simultaneous concept analysis. The protocol of this systematic integrative review was published doi: 10.1136/bmjopen-2021-049862. A comprehensive search was performed in four databases (PubMed, CINAHL, Psychinfo, and Web of Science) from 30th March 2020 to 27th May 2020. A total of 69 Empirical and theoretical journal articles about clinical reasoning of practitioners were included: 27 nursing, 37 medical, and five combining both perspectives. Two reviewers screened the identified papers for eligibility and assessed the quality of the methodologically diverse articles. We used an onion model, based on three layers: Philosophy, Principles, and Techniques to extract and organize the data. Commonalities and differences were identified on professional paradigms, theories, intentions, content, antecedents, attributes, outcomes, and contextual factors. The detected philosophical differences were located on a care-cure and subjective-objective continuum. We observed four principle contrasts: a broad or narrow focus, consideration of the patient as such or of the patient and his relatives, hypotheses to explain or to understand, and argumentation based on causality or association. In the technical layer a difference in the professional concepts of diagnosis and the degree of patient involvement in the reasoning process were perceived. Clinical reasoning can be analysed by breaking it down into layers, and the onion model resulted in detailed features. Subsequently insight was obtained in the differences between nursing and medical reasoning. The origin of these differences is in the philosophical layer (professional paradigms, intentions). This review can be used as a first step toward gaining a better understanding and collaboration in patient care, education and research across the nursing and medical professions.

MULTIFILE

31-12-2022
Reasoning like a doctor or like a nurse? A systematic integrative review
product

Learning for doctor-to-doctor collaboration: a qualitative study exploring the experiences of residents and supervisors with intraprofessional workplace learning in complex tertiary care.

Teheux, L., Wollaars, H., Draaisma, J.M. Coolen, E.H.A.J. Kuijer-Siebelink, W. van der Velden, J.A.E.M. (2023) Learning for doctor-to-doctor collaboration: a qualitative study exploring the experiences of residents and supervisors with intraprofessional workplace learning in complex tertiary care. BMC Med Educ 23, 478. https://doi.org/10.1186/s12909-023-04363-5

PDF

31-05-2023
product

Presentatie Eindniveau Professional Doctorate

Presentatie Eindniveau Professional Doctorate (Kickoff PD community maart 2024) In samenwerking met Anne Khaled et al.

PDF

24-03-2024

Personen 1

persoon

Eric Blaauw

Professor

Projecten 3

project

Development of ROS1-positive cell lines to improve personalized therapy in lung cancer patients

Every year in the Netherlands around 10.000 people are diagnosed with non-small cell lung cancer, commonly at advanced stages. In 1 to 2% of patients, a chromosomal translocation of the ROS1 gene drives oncogenesis. Since a few years, ROS1+ cancer can be treated effectively by targeted therapy with the tyrosine kinase inhibitor (TKI) crizotinib, which binds to the ROS1 protein, impairs the kinase activity and thereby inhibits tumor growth. Despite the successful treatment with crizotinib, most patients eventually show disease progression due to development of resistance. The available TKI-drugs for ROS1+ lung cancer make it possible to sequentially change medication as the disease progresses, but this is largely a ‘trial and error’ approach. Patients and their doctors ask for better prediction which TKI will work best after resistance occurs. The ROS1 patient foundation ‘Stichting Merels Wereld’ raises awareness and brings researchers together to close the knowledge gap on ROS1-driven oncogenesis and increase the options for treatment. As ROS1+ lung cancer is rare, research into resistance mechanisms and the availability of cell line models are limited. Medical Life Sciences & Diagnostics can help to improve treatment by developing new models which mimic the situation in resistant tumor cells. In the current proposal we will develop novel TKI-resistant cell lines that allow screening for improved personalized treatment with TKIs. Knowledge of specific mutations occurring after resistance will help to predict more accurately what the next step in patient treatment could be. This project is part of a long-term collaboration between the ROS1 patient foundation ‘Stichting Merels Wereld’, the departments of Pulmonary Oncology and Pathology of the UMCG and the Institute for Life Science & Technology of the Hanzehogeschool. The company Vivomicx will join our consortium, adding expertise on drug screening in complex cell systems.

Afgerond
project

Encryption for all

This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.

Lopend
project

VHESPER

The project proposal focuses on Virtual Humans (VHs) emerging as a Key Enabling Technology (KET) for societal prosperity. VHs (or embodied, digital, intelligent agents) are highly realistic and highly interactive digital representations of humans in entertainment of serious applications. Most known examples – beyond video games and virtual media productions – are virtual influencers, virtual instructors, virtual news readers, and virtual doctors/patients in health care or therapy. It is increasingly difficult for academic and applied researchers, let alone for users and policymakers, to keep up with the technological developments, societal uses, and risks of VHs. Due to its expertise in game technology, immersive media, and applied AI, BUas is one of the leading partners of the regional Virtual Human Research, Development and Innovation (RDI) agenda. MindLabs coordinates this agenda with BUas, Fontys Uas, and Tilburg University as principal partners. The multidisciplinary RDI agenda integrates design and engineering research, use case applications and evaluation as well as ethics and critical societal reflection. This regional Virtual Humans agenda, however, is not (yet) linked to the EU RDI agenda. Collaboration on Virtual Humans RDI is not yet well established in EU institutions and networks. The aim of this project is to 1) strengthen (our) European-knowledge position on VHs by joining and building networks to find out what the research and innovation agenda on VHs looks like; 2) Conduct one or more experimental studies on empathic interaction between real- and virtual humans to develop a multidisciplinary R&D agenda (pilot title: 'Virtual Humans – Real Emotions'); 3) Develop the ideas, content and partnerships for strong EU-funded RDI proposals In the VESPER project, we partner up with researchers and knowledge institutes the Humbolt University and the University of Bremen in Germany and Howest in Belgium.

Lopend

Redactie-artikelen 1

redactie

Nieuw hoogtepunt voor praktijkgericht onderzoek: alles over de professional doctorate