The pace of introduction of new technology and thus continuous change in skill needs at workplaces, especially for the engineers, has increased. While digitization induced changes in manufacturing, construction and supply chain sectors may not be felt the same in every sector, this will be hard to escape. Both young and experienced engineers will experience the change, and the need to continuously assess and close the skills gap will arise. How will we, the continuing engineering educators and administrators will respond to it? Prepared for engineering educators and administrators, this workshop will shed light on the future of continuing engineering education as we go through exponentially shortened time frames of technological revolution and in very recent time, in an unprecedented COVID-19 pandemic. S. Chakrabarti, P. Caratozzolo, E. Sjoer and B. Norgaard.
Introduction: Given the complexity of teaching clinical reasoning to (future) healthcare professionals, the utilization of serious games has become popular for supporting clinical reasoning education. This scoping review outlines games designed to support teaching clinical reasoning in health professions education, with a specific emphasis on their alignment with the 8-step clinical reasoning cycle and the reflective practice framework, fundamental for effective learning. Methods: A scoping review using systematic searches across seven databases (PubMed, CINAHL, ERIC, PsycINFO, Scopus, Web of Science, and Embase) was conducted. Game characteristics, technical requirements, and incorporation of clinical reasoning cycle steps were analyzed. Additional game information was obtained from the authors. Results: Nineteen unique games emerged, primarily simulation and escape room genres. Most games incorporated the following clinical reasoning steps: patient consideration (step 1), cue collection (step 2), intervention (step 6), and outcome evaluation (step 7). Processing information (step 3) and understanding the patient’s problem (step 4) were less prevalent, while goal setting (step 5) and reflection (step 8) were least integrated. Conclusion: All serious games reviewed show potential for improving clinical reasoning skills, but thoughtful alignment with learning objectives and contextual factors is vital. While this study aids health professions educators in understanding how games may support teaching of clinical reasoning, further research is needed to optimize their effective use in education. Notably, most games lack explicit incorporation of all clinical reasoning cycle steps, especially reflection, limiting its role in reflective practice. Hence, we recommend prioritizing a systematic clinical reasoning model with explicit reflective steps when using serious games for teaching clinical reasoning.
This paper focuses on utilizing the Celciushouse as an escape room in energy education. In a broader context, it also addresses the incorporation of serious gaming in education. The project is part of COVE SEED. SEED - Sustainable Energy Education, aims to develop innovative vocational education and training, working with experts from five different European regions to phase out fossil fuels and contributing to Europe becoming a fossil free energy continent. SEED is a CoVE (Centres of Vocational Excellence) programme. CoVE’s are part of the Erasmus+ program aiming to establish transnational platforms on, among others, regional development, innovation and inclusion. SEED combines education on various international levels including level 2,3,4, and 6. At this moment, the project ESCAPEROOM IN ENERGY EDUCATION is still in its initial phase. With this paper and the accompanying workshop, we aim to gather insights from other international regions involved in the SEED project collaboration. The acceleration of technological developments means that what is learned today may be outdated tomorrow. Therefore, it is essential for educational institutions to focus on developing general skills such as critical thinking, problem-solving, and the ability to quickly absorb new information. The market demands professionals with modern knowledge and skills. Techniques taught to students today may become outdated tomorrow. Therefore, the ability to learn how to learn is becoming increasingly crucial. Analytical and research skills are therefore gaining importance. It is also essential for students to utilize various learning methods. Not just learning from books but particularly learning from practical experience. Practice-oriented learning, where students gain direct experience in real situations, not only reinforces theoretical knowledge but also develops practical skills that are valuable in the job market. To tackle these problems, serious gaming or the establishment of escape rooms can be a solution.
MULTIFILE