In discussions on smart grids, it is often stated that residential end-users will play a more active role in the management of the electric power system. Experience in practice on how to empower end-users for such a role is however limited. This paper presents a field study in the first phase of the PowerMatching City project in which twenty-two households were equipped with demand-response-enabled heating systems and white goods. Although end-users were satisfied with the degree of living comfort afforded by the smart energy system, the user interface did not provide sufficient control and energy feedback to support an active contribution to the balancing of supply and demand. The full potential of demand response was thus not realized. The second phase of the project builds on these findings by design, implementation and evaluation of an improved user interface in combination with two demand response propositions. © 2013 IEEE.
DOCUMENT
Accurate modeling of end-users’ decision-making behavior is crucial for validating demand response (DR) policies. However, existing models usually represent the decision-making behavior as an optimization problem, neglecting the impact of human psychology on decisions. In this paper, we propose a Belief-Desire-Intention (BDI) agent model to model end-users’ decision-making under DR. This model has the ability to perceive environmental information, generate different power scheduling plans, and make decisions that align with its own interests. The key modeling capabilities of the proposed model have been validated in a household end-user with flexible loads
DOCUMENT
In this paper, we detail a software platform that enables game developers to expose aspects of their games to researchers who are not necessarily familiar with game development, providing them the possibility to customize game content for behavioral user research, and more specifically to embed survey items in a game context. With this platform we introduce the concept of Games User Research as a Service (GURaaS). This articled describes the process we followed to design GURaaS, its high level architecture and its application in a case study. We envision that GURaaS will assist researchers and organizations by helping them expand their reach in finding participants and in collecting survey data reducing the tedium for survey participants.
LINK
Introduction: Many adults do not reach the recommended physical activity (PA) guidelines, which can lead to serious health problems. A promising method to increase PA is the use of smartphone PA applications. However, despite the development and evaluation of multiple PA apps, it remains unclear how to develop and design engaging and effective PA apps. Furthermore, little is known on ways to harness the potential of artificial intelligence for developing personalized apps. In this paper, we describe the design and development of the Playful data-driven Active Urban Living (PAUL): a personalized PA application.Methods: The two-phased development process of the PAUL apps rests on principles from the behavior change model; the Integrate, Design, Assess, and Share (IDEAS) framework; and the behavioral intervention technology (BIT) model. During the first phase, we explored whether location-specific information on performing PA in the built environment is an enhancement to a PA app. During the second phase, the other modules of the app were developed. To this end, we first build the theoretical foundation for the PAUL intervention by performing a literature study. Next, a focus group study was performed to translate the theoretical foundations and the needs and wishes in a set of user requirements. Since the participants indicated the need for reminders at a for-them-relevant moment, we developed a self-learning module for the timing of the reminders. To initialize this module, a data-mining study was performed with historical running data to determine good situations for running.Results: The results of these studies informed the design of a personalized mobile health (mHealth) application for running, walking, and performing strength exercises. The app is implemented as a set of modules based on the persuasive strategies “monitoring of behavior,” “feedback,” “goal setting,” “reminders,” “rewards,” and “providing instruction.” An architecture was set up consisting of a smartphone app for the user, a back-end server for storage and adaptivity, and a research portal to provide access to the research team.Conclusions: The interdisciplinary research encompassing psychology, human movement sciences, computer science, and artificial intelligence has led to a theoretically and empirically driven leisure time PA application. In the current phase, the feasibility of the PAUL app is being assessed.
DOCUMENT
To improve people’s lives, human-computer interaction researchers are increasingly designing technological solutions based on behavior change theory, such as social comparison theory (SCT). However, how researchers operationalize such a theory as a design remains largely unclear. One way to clarify this methodological step is to clearly state which functional elements of a design are aimed at operationalizing a specific behavior change theory construct to evaluate if such aims were successful. In this article, we investigate how the operationalization of functional elements of theories and designs can be more easily conveyed. First, we present a scoping review of the literature to determine the state of operationalizations of SCT as behavior change designs. Second, we introduce a new tool to facilitate the operationalization process. We term the tool blueprints. A blueprint explicates essential functional elements of a behavior change theory by describing it in relation to necessary and sufficient building blocks incorporated in a design. We describe the process of developing a blueprint for SCT. Last, we illustrate how the blueprint can be used during the design refinement and reflection process.
DOCUMENT
Background Movement behaviors (i.e., physical activity levels, sedentary behavior) in people with stroke are not self-contained but cluster in patterns. Recent research identified three commonly distinct movement behavior patterns in people with stroke. However, it remains unknown if movement behavior patterns remain stable and if individuals change in movement behavior pattern over time. Objectives 1) To investigate the stability of the composition of movement behavior patterns over time, and 2) determine if individuals change their movement behavior resulting in allocation to another movement behavior pattern within the first two years after discharge to home in people with a first-ever stroke. Methods Accelerometer data of 200 people with stroke of the RISE-cohort study were analyzed. Ten movement behavior variables were compressed using Principal Componence Analysis and K-means clustering was used to identify movement behavior patterns at three weeks, six months, one year, and two years after home discharge. The stability of the components within movement behavior patterns was investigated. Frequencies of individuals’ movement behavior pattern and changes in movement behavior pattern allocation were objectified. Results The composition of the movement behavior patterns at discharge did not change over time. At baseline, there were 22% sedentary exercisers (active/sedentary), 45% sedentary movers (inactive/sedentary) and 33% sedentary prolongers (inactive/highly sedentary). Thirty-five percent of the stroke survivors allocated to another movement behavior pattern within the first two years, of whom 63% deteriorated to a movement behavior pattern with higher health risks. After two years there were, 19% sedentary exercisers, 42% sedentary movers, and 39% sedentary prolongers. Conclusions The composition of movement behavior patterns remains stable over time. However, individuals change their movement behavior. Significantly more people allocated to a movement behavior pattern with higher health risks. The increase of people allocated to sedentary movers and sedentary prolongers is of great concern. It underlines the importance of improving or maintaining healthy movement behavior to prevent future health risks after stroke.
MULTIFILE
Objective. Hospital in Motion is a multidimensional implementation project aiming to improve movement behavior during hospitalization. The purpose of this study was to investigate the effectiveness of Hospital in Motion on movement behavior. Methods. This prospective study used a pre-implementation and post-implementation design. Hospital in Motion was conducted at 4 wards of an academic hospital in the Netherlands. In each ward, multidisciplinary teams followed a 10-month step-by-step approach, including the development and implementation of a ward-specific action plan with multiple interventions to improve movement behavior. Inpatient movement behavior was assessed before the start of the project and 1 year later using a behavioral mapping method in which patients were observed between 9:00 am and 4:00 pm. The primary outcome was the percentage of time spent lying down. In addition, sitting and moving, immobility-related complications, length of stay, discharge destination home, discharge destination rehabilitation setting, mortality, and 30-day readmissions were investigated. Differences between pre-implementation and post-implementation conditions were analyzed using the chi-square test for dichotomized variables, the Mann Whitney test for non-normal distributed data, or independent samples t test for normally distributed data. Results. Patient observations demonstrated that the primary outcome, the time spent lying down, changed from 60.1% to 52.2%. For secondary outcomes, the time spent sitting increased from 31.6% to 38.3%, and discharges to a rehabilitation setting reduced from 6 (4.4%) to 1 (0.7%). No statistical differences were found in the other secondary outcome measures. Conclusion. The implementation of the multidimensional project Hospital in Motion was associated with patients who were hospitalized spending less time lying in bed and with a reduced number of discharges to a rehabilitation setting. Impact. Inpatient movement behavior can be influenced by multidimensional interventions. Programs implementing interventions that specifically focus on improving time spent moving, in addition to decreasing time spent lying, are recommended.
DOCUMENT
Abstract: Combined lifestyle interventions (CLI) are focused on guiding clients with weight-related health risks into a healthy lifestyle. CLIs are most often delivered through face-to-face sessions with limited use of eHealth technologies. To integrate eHealth into existing CLIs, it is important to identify how behavior change techniques are being used by health professionals in the online and offline treatment of overweight clients. Therefore, we conducted online semi-structured interviews with providers of online and offline lifestyle interventions. Data were analyzed using an inductive thematic approach. Thirty-eight professionals with (n = 23) and without (n = 15) eHealth experience were interviewed. Professionals indicate that goal setting and action planning, providing feedback and monitoring, facilitating social support, and shaping knowledge are of high value to improve physical activity and eating behaviors. These findings suggest that it may be beneficial to use monitoring devices combined with video consultations to provide just-in-time feedback based on the client’s actual performance. In addition, it can be useful to incorporate specific social support functions allowing CLI clients to interact with each other. Lastly, our results indicate that online modules can be used to enhance knowledge about health consequences of unhealthy behavior in clients with weight-related health risks.
DOCUMENT
Due to a lack of transparency in both algorithm and validation methodology, it is diffcult for researchers and clinicians to select the appropriate tracker for their application. The aim of this work is to transparently present an adjustable physical activity classification algorithm that discriminates between dynamic, standing, and sedentary behavior. By means of easily adjustable parameters, the algorithm performance can be optimized for applications using different target populations and locations for tracker wear. Concerning an elderly target population with a tracker worn on the upper leg, the algorithm is optimized and validated under simulated free-living conditions. The fixed activity protocol (FAP) is performed by 20 participants; the simulated free-living protocol (SFP) involves another 20. Data segmentation window size and amount of physical activity threshold are optimized. The sensor orientation threshold does not vary. The validation of the algorithm is performed on 10 participants who perform the FAP and on 10 participants who perform the SFP. Percentage error (PE) and absolute percentage error (APE) are used to assess the algorithm performance. Standing and sedentary behavior are classified within acceptable limits (+/- 10% error) both under fixed and simulated free-living conditions. Dynamic behavior is within acceptable limits under fixed conditions but has some limitations under simulated free-living conditions. We propose that this approach should be adopted by developers of activity trackers to facilitate the activity tracker selection process for researchers and clinicians. Furthermore, we are convinced that the adjustable algorithm potentially could contribute to the fast realization of new applications.
DOCUMENT
This study explores how households interact with smart systems for energy usage, providing insights into the field's trends, themes and evolution through a bibliometric analysis of 547 relevant literature from 2015 to 2025. Our findings discover: (1) Research activity has grown over the past decade, with leading journals recognizing several productive authors. Increased collaboration and interdisciplinary work are expected to expand; (2) Key research hotspots, identified through keyword co-occurrence, with two (exploration and development) stages, highlighting the interplay between technological, economic, environmental, and behavioral factors within the field; (3) Future research should place greater emphasis on understanding how emerging technologies interact with human, with a deeper understanding of users. Beyond the individual perspective, social dimensions also demand investigation. Finally, research should also aim to support policy development. To conclude, this study contributes to a broader perspective of this topic and highlights directions for future research development.
MULTIFILE