The SynergyS project aims to develop and assess a smart control system for multi-commodity energy systems (SMCES). The consortium, including a broad range of partners from different sectors, believes a SMCES is better able to incorporate new energy sources in the energy system. The partners are Hanze, TU Delft, University of Groningen, TNO, D4, Groningen Seaports, Emerson, Gain Automation Technology, Energy21, and Enshore. The project is supported by a Energy Innovation NL (topsector energie) subsidy by the Ministry of Economic Affairs.Groningen Seaports (Eemshaven, Chemical Park Delfzijl) and Leeuwarden are used as case studies for respectively an industrial and residential cluster. Using a market-based approach new local energy markets have been developed complementing the existing national wholesale markets. Agents exchange energy using optimized bidding strategies, resulting in better utilization of the assets in their portfolio. Using a combination of digital twins and physical assets from two field labs (ENTRANCE, The Green Village) performance of the SMCES is assessed. In this talk the smart multi-commodity energy system is presented, as well as some first results of the assessment. Finally an outlook is given how the market-based approach can benefit the development of energy hubs.
LINK
n the work package described in this report, members are investigating whether a cooperative of farmers can become self-sufficient in energy and fertilization by using manure and organic waste flows in combination with anaerobic fermentation. The aim is to link the nutrient cycle (from manure to digestate to green fertilizer consisting of, for example, nitrate, phosphate, potassium, and trace elements) to a self-sufficient energy system, by the combined production of electricity, green gas, green fuels, and green fertilizers. Within this research such a system is called a circular multi commodity system (CMCS). In effect linking, the nutrient cycle with an energy production chain. In addition, other energy sources and sinks can also play a role in the system such as wind, solar PV and storage (e.g. batteries or hydrogen). For this symbiosis of production techniques to succeed in practice, intensive cooperation between arable farmers and dairy farmers is needed. Farmers supply part of the input from the biofermenter and receive green fertilizers at the end of the process, which are used as a substitute for fertilizer. The case is based on a cooperative of farmers with a minimal geographical spread and maximum diversity in type of business. In this way, the current waste and nutrient chain is being replaced by a more sustainable and closed cycle. This could provide significant environmental benefits: reduction of the environmental impact through the use of fertilizer, reduction of dependence on fossil raw materials, and reduction of CO2 emissions.
The goal of a local energy community (LEC) is to create a more sustainable, resilient, and efficient energy system by reducing dependence on centralized power sources and enabling greater participation and control by local communities and individuals. LEC requires transformations in local energy systems, and strongly depends on the preferences and actions of the local actors involved. The necessity for extensive stakeholder involvement adds complexity to the energy transition, posing a significant challenge for all involved parties. The municipality of Leidschendam-Voorburg has committed to the national decision for energy transition. It has taken a strategic approach by proceeding De Heuvel/Amstelwijk as the pioneer in this initiative, leading the way for other neighborhoods to follow. It is crucial to devise strategies that effectively facilitate stakeholder engagement. To this end, a thorough stakeholder analysis is needed. Such an analysis can focus on the identification of key stakeholders, their interests, their influence, and their behavioral characteristics in relation to the energy transition. Additionally, it's crucial to uncover the challenges encountered by these stakeholders and finally develop appropriate strategies to address them hence enhance their engagement. This thesis begins with an introduction to the research background, including a presentation of the case study and a statement of the problem identified in the field, followed by the research questions underpinning the study. A thorough literature review ensues, providing a robust synthesis of existing research relating to stakeholder engagement in LECs, with a view to expediting energy transitions. The literature review not only forms the foundation for the research methods adopted in this study but also promotes in the construction of the conceptual model. Subsequent to the literature review, the research method is detailed. The filed research is conducted in five steps: Step 1 - identification of stakeholders, Step 2 - prioritization of stakeholders, Step 3 - interviewing, Step 4 - data analysis, including stakeholder profiling with mapping and addressing challenges, and finally, Step 5 - proposal of strategies for stakeholder engagement enhancement based on the expected and current levels of stakeholders engagement. This research collects necessary information to understand the profiles of stakeholders in De Heuvel/Amstelwijk, tackle challenges faced by different stakeholders, propose strategies to increase stakeholders engagement. It not only aims to enrich the depth of theoretical knowledge on the subject matter but also strives to aid in the development of a localized energy strategy that is optimally suited for the De Heuvel/Amstelwijk neighborhood as good example for other neighborhoods.
NO-REGRETS examines the ecological and economic trade-offs of upscaling Offshore Wind Farms (OWFs) in the context of climate change and the ongoing food and nature transitions in the North Sea. NO-REGRETS advances knowledge on potential impacts of OWFs on ocean currents, suspended sediments, microscopic plankton, various life stages of fishes, seabed composition, seafloor organisms, marine mammals, and sea birds. Economic analyses explore changes in the value of marine fisheries and other ocean assets. Co-developed with stakeholders, NO-REGRETS will create tools allowing policymakers, industries and other stakeholders to gauge and optimise the ecological and bioeconomic consequences of North Sea OWF expansion.Collaborative partnersArcadis Nederland B.V., Blauwwind, Boskalis, Breda University of Applied Sciences, Centraal Bureau voor de Statistiek, Clusius C.V., Cooperatie Kottervisserij Nederland, Deltares, EcoShape, Eneco Windmolens Offshore B.V., Heerema Marine Contractors, Jaczon B.V., Nederlandse Vissersbond, Noordelijke Visserij Alliantie, NIOZ, NWO-institutenorganisatie, Ørsted Wind Power Netherlands Holding B.V., Pelagic Freezer Trawler Association, Rijksuniversiteit Groningen, Rijkswaterstaat, RWE Offshore Wind Netherlands B.V., Stichting Naturalis Biodiversity Center, Stichting Wageningen Research, Technische Universiteit Delft, Technische Universiteit Eindhoven, TNO Utrecht, Universiteit Leiden, Universiteit Twente, Universiteit van Amsterdam, Wageningen University & Research.