The municipality of Apeldoorn had polled the interest among its private home-owners to turn their homes energy neutral. Based on the enthusiastic response, Apeldoorn saw the launch of the Energy Apeldoorn (#ENEXAP) in 2011. Its goal was to convert to it technically and financially possible for privately owned homes to be refurbished and to energy neutral, taking the residential needs and wishes from occupants as the starting point. The project was called an Expedition, because although the goal was clear, the road to get there wasn’t. The Expedition team comprised businesses, civil-society organisations, the local university of applied sciences, the municipality of Apeldoorn, and of course, residents in a central role. The project was supported by Platform31, as part of the Dutch government’s Energy Leap programme. The #ENEXAP involved 38 homes, spread out through Apeldoorn and surrounding villages. Even though the houses were very diverse, the group of residents was quite similar: mostly middle- aged, affluent people who highly value the environment and sustainability. An important aspect of the project was the independent and active role residents played. In collaboration with businesses and professionals, through meetings, excursions, workshops and by filling in a step- by-step plan on the website, the residents gathered information about their personal situation, the energy performance of their home and the possibilities available for them to save and generate energy themselves. Businesses were encouraged to develop an integrated approach for home-owners, and consortia were set up by businesses to develop the strategy, products and services needed to meet this demand. On top of making minimal twenty from the thirty-eight houses in the project energy neutral, the ultimate goal was to boost the local demand for energy- neutral refurbishment and encourage an appropriate supply of services, opening up the (local) market for energy neutral refurbishment. This paper will reflect on the outcomes of this collective in the period 2011-2015.
DOCUMENT
Reducing energy consumption in urban households is essential for reaching the necessary climate research and policy targets for CO2 reduction and sustainability. The dominant approach has been to invest in technological innovations that increase household energy efficiency. This article moves beyond this approach, first by emphasising the need to prioritise reducing energy demand over increasing energy efficiency and, second, by addressing the challenge of energy consumption at the level of the community, not the individual household. It argues that energy consumption is shaped in and by social communities, which construct consciousness of the energy implications of lifestyle choices. By analysing a specific type of community, a digital community, it looks at the role that communication on online discussion boards plays in the social process of questioning energy needs and shaping a “decent lifestyle”. The article explores three social processes of community interaction around energy practices – coercive, mimetic, and normative – questioning the ways in which they contribute to the activation of energy discursive consciousness. In conclusion, the article reflects on the potential implications of these social processes for future research and interventions aimed at reducing energy demand. To illustrate how the three selected social processes influence one another, the article builds on the results of a research project conducted in Amsterdam, analysing the potential contribution of online discussion boards in shaping energy norms in the Sustainable Community of Amsterdam Facebook group.
DOCUMENT
Key takeaways from the project underscore the importance of fostering long-term collaborations between technical experts, communities, and institutional partners. By integrating technical innovation with human-centred design, the SUSTENANCE project has not only advanced renewable energy adoption but also established a framework for empowering communities to actively participate in sustainable energy transitions. Moving forward, the lessons learned, and solutions developed provide a solid foundation for addressing future challenges in energy system decarbonization and resilience.
MULTIFILE
Energy efficiency has gained a lot of prominence in recent debates on urban sustainability and housing policy due to its potential consequences for climate change. At the local, national and also international level, there are numerous initiatives to promote energy savings and the use of renewable energy to reduce the environmental burden. There is a lot of literature on energy saving and other forms of energy efficiency in housing. However, how to bring this forward in the management of individual housing organisations is not often internationally explored. An international research project has been carried out to find the answers on management questions of housing organisations regarding energy efficiency. Eleven countries have been included in this study: Germany, the United Kingdom (more specifically: England), France, Sweden, Denmark, the Netherlands, Switzerland, Slovenia, the Czech Republic, Austria and Canada. The state of the art of energy efficiency in the housing management of non-profit housing organisations and the embedding of energy efficiency to improve the quality and performance of housing in management practices have been investigated, with a focus on how policy ambitions about energy efficiency are brought forward in investment decisions at the estate level. This paper presents the conclusions of the research
DOCUMENT
Peer-to-peer (P2P) energy trading has been recognized as an important technology to increase the local self-consumption of photovoltaics in the local energy system. Different auction mechanisms and bidding strategies haven been investigated in previous studies. However, there has been no comparatively analysis on how different market structures influence the local energy system’s overall performance. This paper presents and compares two market structures, namely a centralized market and a decentralized market. Two pricing mechanisms in the centralized market and two bidding strategies in the decentralized market are developed. The results show that the centralized market leads to higher overall system self-consumption and profits. In the decentralized market, some electricity is directly sold to the grid due to unmatchable bids and asks. Bidding strategies based on the learning algorithm can achieve better performance compared to the random method.
DOCUMENT
This report describes the creation and use of a database for energy storage technologies which was developed in conjunction with Netbeheer Nederland and the Hanze University of Applied Sciences. This database can be used to make comparisons between a selection of storage technologies and will provide a method for ranking energy storage technology suitability based on the desired application requirements. In addition, this document describes the creation of the energy storage label which contains detailed characteristics for specific storage systems. The layout of the storage labels enables the analysis of different storage technologies in a comprehensive, understandable and comparative manner. A sampling of storage technology labels are stored in an excel spreadsheet and are also compiled in Appendix I of this report; the storage technologies represented here were found to be well suited to enable flexibility in energy supply and to potentially provide support for renewable energy integration [37] [36]. The data in the labels is presented on a series of graphs to allow comparisons of the technologies. Finally, the use and limitations of energy storage technologies are discussed. The results of this research can be used to support the Dutch enewable Energy Transition by providing important information regarding energy storage in both technically detailed and general terms. This information can be useful for energy market parties in order to analyze the role of storage in future energy scenarios and to develop appropriate strategies to ensure energy supply.
MULTIFILE
With this “invitation for action”, the Diversity, Inclusion & Gender Equality (DIGE) Working Group of the AEC - Empowering Artists as Makers in Society project (hereafter, ARTEMIS) welcomes all the AEC member institutions to explore, discuss and implement practices fostering Diversity, Equity and Inclusion (DEI) in Higher Music Education (HME). We invite our colleagues to collectively dream up possible futures for HME through DEI work, which responds to the need to accommodate the plurality of backgrounds, artistic paradigms, access capabilities, identities and aspirations amongst current as well as future students and staff. Through this publication we wish to encourage the AEC memberinstitutions to grasp this simultaneously evident and complex task and to explore what diversity, equity and inclusion could mean if musicians are seen as “makers in, for and of society” (Gaunt et al. 2021). For us as a Working Group, this proactive view has been central to our work from the beginning, as we asked ourselves whether HME institutions find themselves predominantly adapting (or not) to inevitable local and global changes and pressures, and whether the HMEinstitutions could see themselves as part of a network of change makers in society. Focusing on the latter, we see DEI work as being directly connected to the core artistic practices of the institutions. As reflections from many of our colleagues in various AEC member institutions illustrate, the commitment to DEI work nurtures artistic imagination, widens pedagogical approaches, and expands the scope of professional practice.
DOCUMENT
The research explored how a Dutch energy cluster embedded within a larger context of European and global developments reflected complex dynamics due to changes in its context. The case study explored Energy Valley of the Netherlands, a peripheral region that meets the challenge of energy transition, regional development and national economic interests. The research engaged complex adaptive systems approach to gain insights into complex cluster dynamics to contribute to cluster study and policy.The research captured insights into increased complexity of an energy cluster due to energy transition and other developments in the cluster context, exacerbated by differences in perceptions and responses of stakeholders to the new challenges. Findings on cluster developments included insights into cluster context, cluster condition, cluster dynamics and cluster transformations, and the interconnectedness of such developments based on Energy Valley and supplementary cases of Karlstad and Silicon Valley. The research findings led to insights into cluster systems developments and a model capturing cluster emergence.The research contributed to cluster theory by developing a CAS approach for cluster study that developed a whole systems approach to understand cluster dynamics, offering to the field of cluster study a qualitative understanding of cluster systems developments. Insights into interconnected developments at the micro, macro and inter-systemic levels, and into energy clusters in the context of energy transition were results of the research. The broad scope and nature of the study meant limitations were inherent and therefore recommendations for future research were included. EU Cluster Policy motivated the research and hence recommendations for policy developments were also part of the research contribution
DOCUMENT
To achieve the “well below 2 degrees” targets, a new ecosystem needs to be defined where citizens become more active, co-managing with relevant stakeholders, the government, and third parties. This means moving from the traditional concept of citizens-as-consumers towards energy citizenship. Positive Energy Districts (PEDs) will be the test-bed area where this transformation will take place through social, technological, and governance innovation. This paper focuses on benefits and barriers towards energy citizenships and gathers a diverse set of experiences for the definition of PEDs and Local Energy Markets from the Horizon2020 Smart Cities and Communities projects: Making City, Pocityf, and Atelier.
DOCUMENT
Energiebeheer gericht aanpakken, Het analyseren van doelstellingen, resultaten en impacts van energie- en broeikasgasbeheersprogramma’s in bedrijven (met een samenvatting in het Nederlands): De wereldwijde uitstoot van broeikasgassen moet drastisch worden teruggebracht om de mondiale stijging van de temperatuur tot het relatief veilige niveau van maximaal 2 graden Celsius te beperken. In de komende decennia zal de verbetering van de energie-efficiëntie de belangrijkste strategie zijn voor het verminderen van de energiegerelateerde uitstoot van broeikasgassen. Hoewel er een enorm potentieel is voor verbetering van de energie-efficiëntie, wordt een groot deel daarvan nog niet benut. Dit wordt veroorzaakt door diverse investeringsbarrières die de invoering van maatregelen voor energie-efficiëntie verbetering verhinderen. De invoering van energiemanagement wordt vaak beschouwd als een manier om dergelijke barrières voor energiebesparing te overwinnen. De invoering van energiemanagement in bedrijven kan worden gestimuleerd door de introductie van programma's voor energie-efficiëntie verbetering en vermindering van de uitstoot van broeikasgassen. Deze programma's zijn vaak een combinatie van verschillende elementen zoals verplichtingen voor energiemanagement; (ambitieuze) doelstellingen voor energiebesparing of beperking van de uitstoot van broeikasgassen; de beschikbaarheid van regelingen voor stimulering, ondersteuning en naleving; en andere verplichtingen, zoals openbare rapportages, certificering en verificatie. Tot nu toe is er echter beperkt inzicht in het proces van het formuleren van ambitieuze doelstellingen voor energie-efficiëntie verbetering of het terugdringen van de uitstoot van broeikasgassen binnen deze programma's, in de gevolgen van de invoering van dergelijke programma's op de verbetering van het energiemanagement, en in de impact van deze programma's op energiebesparing of de vermindering van de uitstoot van broeikasgassen. De centrale onderzoeksvraag van dit proefschrift is als volgt geformuleerd: "Wat is de impact van energie- en broeikasgasmanagement programma’s op het verbeteren van het energiemanagement in de praktijk, het versnellen van de energieefficiëntie verbetering en het beperken van de uitstoot van broeikasgassen in bedrijven?".
DOCUMENT