We report research into the evolvement of a hybrid learning environment where education, companies and government successfully cooperate. This hybrid learning environment—one of the latest inventions in curriculum design—is special because it was neither intended nor planned by the parties involved. With some self-astonishment, the participants in this research experienced a growing acknowledgement of their emerging educational creation, aside from the experience of and appreciation for their cooperation and the increasing turnover. With a bricolage research approach within the scope of a rhizomatic perspective on becoming, a multivocal perspective on the evolvement of the learning environment was pursued. In emphasizing the historical evolvement of the learning environment, our findings challenge the tradition of drawing board design, accompanied by an appeal for re-appreciating professional craftsmanship. In addition, some reflections regarding the research are discussed.
Ruim 2.100 sociaal werkers, docenten en onderzoekers uit 99 landen verzamelden zich van 3 t/m 7 juli 2018 in Dublin voor de tweejaarlijkse Joint World Conference on Social Work, Education and Social Development (SWSD2018). Zij luisterden naar de talrijke (korte) lezingen, gingen met elkaar in gesprek tijdens workshops of ontmoetten elkaar bij de vele posterpresentaties
This entry begins by reviewing the definitions of “human”, “environment” and “dichotomy”, consequently turning to the debates concerning the human–environment relationship. Synthesizing various studies, the capability of advanced tool use; language, hyper-sociality, advanced cognition, morality, civilization, technology, and free will are supposed to be distinctly human. However, other studies describe how nonhuman organisms share these same abilities. The biophysical or natural environment is often associated with all living and non-living things that occur naturally. The environment also refers to ecosystems or habitats, including all living organisms or species. The concepts of the biophysical or natural environment are often opposed to the concepts of built or modified environment, which is artificial - constructed or influenced by humans. The built or modified environment typically refers to structures or spaces from gardens to car parks. Today, one of the central questions in regard to human-environment dichotomies centres around the concept of sustainability. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118924396 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
The production of denim makes a significant contribution to the environmental impact of the textile industry. The use of mechanically recycled fibers is proven to lower this environmental impact. MUD jeans produce denim using a mixture of virgin and mechanically recycled fibers and has the goal to produce denim with 100% post-consumer textile by 2020. However, denim fabric with 100% mechanically recycled fibers has insufficient mechanical properties. The goal of this project is to investigate the possibilities to increase the content of recycled post-consumer textile fibers in denim products using innovative recycling process technologies.
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.