Educational institutions and vocational practices need to collaborate to design learning environments that meet current-day societal demands and support the development of learners’ vocational competence. Integration of learning experiences across contexts can be facilitated by intentionally structured learning environments at the boundary of school and work. Such learning environments are co-constructed by educational institutions and vocational practices. However, co-construction is challenged by differences between the practices of school and work, which can lead to discontinuities across the school–work boundary. More understanding is needed about the nature of these discontinuities and about design considerations to counterbalance these discontinuities. Studies on the co-construction of learning environments are scarce, especially studies from the perspective of representatives of work practice. Therefore, the present study explores design considerations for co-construction through the lens of vocational practice. The study reveals a variety of discontinuities related to the designable elements of learning environments (i.e. epistemic, spatial, instrumental, temporal, and social elements). The findings help to improve understanding of design strategies for counterbalancing discontinuities at the interpersonal and institutional levels of the learning environment. The findings confirm that work practice has a different orientation than school practice since there is a stronger focus on productivity and on the quality of the services provided. However, various strategies for co-construction also seem to take into account the mutually beneficial learning potential of the school–work boundary.
LINK
Review of 42 journal articles on learning environments at the school-work boundary.
LINK
The design and realization of a healthy indoor environment is a challenge that is investigated from different perspectives at the unit Building Physics and Systems (BPS; Faculty of Architecture, Building and Planning) of Eindhoven University of Technology. Performance requirements (for instance, with respect to air quality, thermal comfort and lighting) and performance based assessment methods are the point-of-departure, focusing at computational techniques supporting the design process. Different specific application fields such as dwellings, offices, schools, but also, operating theatres, churches, musea and multifunctional stadiums, underline the applied approach that is part of the research within the unit. In the design of healthy environments, the performance based design assessment is crucial in arriving at innovative design solutions and optimized indoor and outdoor environments. In this assessment computational support tools and experimental verification play an important role. However, assessing the right indicators in an objective way, applying the correct tools and correct application of these tools is not yet well established. Alongside, developments are still ongoing. The work performed in the unit by the different researchers relates to the research questions that can be derived from this notice. The paper gives an introduction to the Unit BPS and presents a brief overview of recent and ongoing research. An extensive list of references is provided for further reading and supports the conclusion that healthy environments can and should be addressed from a wide angle.
LINK
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
The project’s aim is to foster resilient learning environments, lessen early school leaving, and give European children (ages 4 -6) a good start in their education while providing and advancing technical skills in working with technology that will serve them well in life. For this purpose, the partnership has developed age appropriate ICT animation tools and games - as well as pedagogical framework specific to the transition phase from kindergarten to school.