Learning environment designs at the boundary of school and work can be characterised as integrative because they integrate features from the contexts of school and work. Many different manifestations of such integrative learning environments are found in current vocational education, both in senior secondary education and higher professional education. However, limited research has focused on how to design these learning environments and not much is known about their designable elements (i.e. the epistemic, spatial, instrumental, temporal and social elements that constitute the learning environments). The purpose of this study was to examine manifestations of two categories of integrative learning environment designs: designs based on incorporation; and designs based on hybridisation. Cross-case analysis of six cases in senior secondary vocational education and higher professional education in the Netherlands led to insights into the designable elements of both categories of designs. We report findings about the epistemic, spatial, instrumental, temporal and social elements of the studied cases. Specific characteristics of designs based on incorporation and designs based on hybridisation were identified and links between the designable elements became apparent, thus contributing to a deeper understanding of the design of learning environments that aim to connect the contexts of school and work.
LINK
This paper deals with the problematic nature of the transition between education and the workplace. A smooth transition between education and the workplace requires learners to develop an integrated knowledge base, but this is problematic as most educational programmes offer knowledge and experiences in a fragmented manner, scattered over a variety of subjects, modules and (work) experiences. To overcome this problem, we propose a design approach and shifting the educational focus of attention from individual learners to learning environments. The broader notion of learning environments facilitates transitions by establishing horizontal connections between schools and the workplace. The main argument of this paper is that combining or connecting aspects of school-based settings only is not sufficient to ensure learners will develop an integrated knowledge base. The concept and examples of “hybrid learning environment” show how formal, school-based learning and workplace experiences can be closely connected. The paper offers a framework of four coherent perspectives that can help to understand the complex nature of such environments and to design hybrid learning environments: the “agency perspective”, the “spatial perspective”, the “temporal perspective”, and the “instrumental perspective”. The framework is applied to three cases taken from vocational education in the Netherlands to describe what hybrid learning environments look like in contemporary educational practice. RÉSUMÉ
Background: Running has become one of the most popular sports and has proven benefits for public health. Policy makers are increasingly aware that attractively designed public spaces may promote running. However, little is known about what makes a running environment attractive and restorative for runners and to what extent this depends on characteristics of the runner. This study aims to investigate 1) to what extent intrapersonal characteristics (i.e. motives and attitudes) and perceived environmental characteristics (e.g. quality of the running surface, greenness of the route, feelings of safety and hinderance by other road users) are associated with the perceived attractiveness and restorative capacity of the running environment and 2) to what extent the number of years of running experience modify these associations. Methods: Cross-sectional data were collected through the online Eindhoven Running Survey 2015 (ERS15) among half marathon runners (N = 2477; response rate 26.6%). Linear regression analyses were performed for two outcomes separately (i.e. perceived attractiveness and perceived restorative capacity of the running environment) to investigate their relations with motives and attitudes, perceived environmental characteristics and interactions between perceived environmental characteristics and number of years of running experience. Results: Perceived environmental characteristics, including green and lively routes and a comfortable running surface were more important for runners’ evaluation of the attractiveness and restorative capacity of the running environment than runners’ motives and attitudes. In contrast to experienced runners, perceived hinder from unleashed dogs and pedestrians positively impacted the attractiveness and restorative capacity for less experienced runners. Conclusions: Perceived environmental characteristics were important determinants of the attractiveness and restorative capacity of the running environment for both novice and experienced runners. However, green and lively elements in the running environment and hinderances by cars were more important for less experienced runners. In order to keep novice runners involved in running it is recommended to design comfortable running tracks and routes and provide good access to attractive, green and lively spaces.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.