Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
DOCUMENT
Background The Self-Expression Emotion Regulation in Art Therapy Scale (SERATS) was developed as art therapy lacked outcome measures that could be used to monitor the specific effects of art therapy. Although the SERATS showed good psychometric properties in earlier studies, it lacked convergent validity and thus construct validity. Method To test the convergent validity of the SERATS correlation was examined with the EES (Emotional Expressivity Scale), Emotion Regulation Strategies for Artistic Creative Activities Scale (ERS-ACA) and Healthy-Unhealthy Music Scale (HUMS). Patients diagnosed with a Personality Disorder, and thus having self-regulation and emotion regulation problems (n = 179) and a healthy student population (n = 53) completed the questionnaires (N = 232). Results The SERATS showed a high reliability and convergent validity in relation to the ERS-ACA approach strategies and self-development strategies in both patients and students and the HUMS healthy scale, in patients. Hence, what the SERATS measures is highly associated with emotion regulation strategies like acceptance, reappraisal, discharge and problem solving and with improving a sense of self including self-identity, increased self-esteem and improved agency as well as the healthy side of art making. Respondents rated the SERATS as relatively easy to complete compared to the other questionnaires. Conclusion The SERATS is a valid, useful and user-friendly tool for monitoring the effect of art therapy that is indicative of making art in a healthy way that serves positive emotion regulation and self-development.
DOCUMENT
The exploitation of the metagenome for novel biocatalysts by functional screening is determined by the ability to express the respective genes in a surrogate host. The probability of recovering a certain gene thereby depends on its abundance in the environmental DNA used for library construction, the chosen insert size, the length of the target gene, and the presence of expression signals that are functional in the host organism. In this paper, we present a set of formulas that describe the chance of isolating a gene by random expression cloning, taking into account the three different modes of heterologous gene expression: independent expression, expression as a transcriptional fusion and expression as a translational fusion. Genes of the last category are shown to be virtually inaccessible by shotgun cloning because of the low frequency of functional constructs. To evaluate which part of the metagenome might in this way evade exploitation, 32 complete genome sequences of prokaryotic organisms were analysed for the presence of expression signals functional in E. coli hosts, using bioinformatics tools. Our study reveals significant differences in the predicted expression modes between distinct taxonomic groups of organisms and suggests that about 40% of the enzymatic activities may be readily recovered by random cloning in E. coli.
DOCUMENT
Synthetic ultra-black (UB) materials, which demonstrate exceptionally high absorbance (>99%) of visible light incident on their surface, are currently used as coatings in photovoltaic cells and numerous other applications. Most commercially available UB coatings are based on an array of carbon nanotubes, which are produced at relatively high temperature and result in numerous by-products. In addition, UB nanotube coatings require harsh application conditions and are very susceptible to abrasion. As a result, these coatings are currently obtained using a manufacturing process with relatively high costs, high energy consumption and low sustainability. Interestingly, an UB coating based on a biologically derived pigment could provide a cheaper and more sustainable alternative. Specifically, GLO Biotics proposes to create UB pigment by taking a bio-mimetic approach and replicate structures found in UB deep-sea fish. A recent study[1] has actually shown that specific fish have melanosomes in their skin with particular dimensions that allow absorption of up to 99.9% of incident light. In addition to this, recent advances in bacterial engineering have demonstrated that it is possible to create bacteria-derived melanin particles with very similar dimensions to the melanosomes in aforementioned fish. During this project, the consortium partners will combine both scientific observations in an attempt to provide the proof-of-concept for developing an ultra-black coating using bacteria-derived melanin particles as bio-based, sustainable pigment. For this, Zuyd University of Applied Sciences (Zuyd) and Maastricht University (UM) collaborate with GLO Biotics in the development of the innovative ‘BLACKTERIA’ UB coating technology. The partners will attempt at engineering an E. coli expression system and adapt its growth in order to produce melanin particles of desired dimensions. In addition, UM will utilize their expertise in industrial coating research to provide input for experimental set-up and the development of a desired UB coating using the bacteria-derived melanin particles as pigment.
CRISPR/Cas genome engineering unleashed a scientific revolution, but entails socio-ethical dilemmas as genetic changes might affect evolution and objections exist against genetically modified organisms. CRISPR-mediated epigenetic editing offers an alternative to reprogram gene functioning long-term, without changing the genetic sequence. Although preclinical studies indicate effective gene expression modulation, long-term effects are unpredictable. This limited understanding of epigenetics and transcription dynamics hampers straightforward applications and prevents full exploitation of epigenetic editing in biotechnological and health/medical applications.Epi-Guide-Edit will analyse existing and newly-generated screening data to predict long-term responsiveness to epigenetic editing (cancer cells, plant protoplasts). Robust rules to achieve long-term epigenetic reprogramming will be distilled based on i) responsiveness to various epigenetic effector domains targeting selected genes, ii) (epi)genetic/chromatin composition before/after editing, and iii) transcription dynamics. Sustained reprogramming will be examined in complex systems (2/3D fibroblast/immune/cancer co-cultures; tomato plants), providing insights for improving tumor/immune responses, skin care or crop breeding. The iterative optimisations of Epi-Guide-Edit rules to non-genetically reprogram eventually any gene of interest will enable exploitation of gene regulation in diverse biological models addressing major societal challenges.The optimally balanced consortium of (applied) universities, ethical and industrial experts facilitates timely socioeconomic impact. Specifically, the developed knowledge/tools will be shared with a wide-spectrum of students/teachers ensuring training of next-generation professionals. Epi-Guide-Edit will thus result in widely applicable effective epigenetic editing tools, whilst training next-generation scientists, and guiding public acceptance.
In the past decade additive manufacturing has gained an incredible traction in the construction industry. The field of 3D concrete printing (3DCP) has advanced significantly, leading to commercially viable housing projects. The use of concrete represents a challenge because of its environmental impact and CO2 footprint. Due to its material properties, structural capacity and ability to take on complex geometries with relative ease, concrete is and will remain for the foreseeable future a key construction material. The framework required for casting concrete, in particular non-orthogonal geometries, is in itself wasteful, not reusable, contributing to its negative environmental impact. Non-standard, complex geometries generally require the use of moulds and subsystems to be produced, leading to wasteful, material-intense manufacturing processes, with high carbon footprints. This research proposal bypasses the use of wasteful scaffolding and moulds, by exploring 3D printing with concrete on reusable substructures made of sand, clay or aggregate. Optimised material depositing strategies for 3DCP will be explored, by making use of algorithmic structural optimisation. This way, material is deposited only where structurally needed, allowing for further reduction of raw-material use. This collaboration between Neutelings Riedijk Architects, Vertico and the Architectural Design and Engineering Chair of the TU Eindhoven, investigates full-scale additive manufacturing of spatially complex 3D-concrete printed components using multi-material support systems (clay, sand and aggregates). These materials can be easily shaped multiple times into substrates with complex geometries, without generating material waste. The 3D concrete printed full-scale prototypes can be used as lightweight façade elements, screens or spatial dividers. To generate waterproof components, the cavities of the extruded lattices can be filled up with lightweight clay or cement. This process allows for the exploration of new aesthetic, creative and circular possibilities, complex geometries and new material expressions in architecture and construction, while reducing raw-material use and waste.