There remains some debate about whether beta power effects observed during sentence comprehension reflect ongoing syntactic unification operations (beta-syntax hypothesis), or instead reflect maintenance or updating of the sentence-level representation (beta-maintenance hypothesis). In this study, we used magnetoencephalography to investigate beta power neural dynamics while participants read relative clause sentences that were initially ambiguous between a subject- or an object-relative reading. An additional condition included a grammatical violation at the disambiguation point in the relative clause sentences. The beta-maintenance hypothesis predicts a decrease in beta power at the disambiguation point for unexpected (and less preferred) object-relative clause sentences and grammatical violations, as both signal a need to update the sentence-level representation. While the beta-syntax hypothesis also predicts a beta power decrease for grammatical violations due to a disruption of syntactic unification operations, it instead predicts an increase in beta power for the object-relative clause condition because syntactic unification at the point of disambiguation becomes more demanding. We observed decreased beta power for both the agreement violation and object-relative clause conditions in typical left hemisphere language regions, which provides compelling support for the beta-maintenance hypothesis. Mid-frontal theta power effects were also present for grammatical violations and object-relative clause sentences, suggesting that violations and unexpected sentence interpretations are registered as conflicts by the brain's domain-general error detection system.
MULTIFILE
Accurate localization in autonomous robots enables effective decision-making within their operating environment. Various methods have been developed to address this challenge, encompassing traditional techniques, fiducial marker utilization, and machine learning approaches. This work proposes a deep-learning solution employing Convolutional Neural Networks (CNN) to tackle the localization problem, specifically in the context of the RobotAtFactory 4.0 competition. The proposed approach leverages transfer learning from the pre-trained VGG16 model to capitalize on its existing knowledge. To validate the effectiveness of the approach, a simulated scenario was employed. The experimental results demonstrated an error within the millimeter scale and rapid response times in milliseconds. Notably, the presented approach offers several advantages, including a consistent model size regardless of the number of training images utilized and the elimination of the need to know the absolute positions of the fiducial markers.
The use of machine learning in embedded systems is an interesting topic, especially with the growth in popularity of the Internet of Things (IoT). The capacity of a system, such as a robot, to self-localize, is a fundamental skill for its navigation and decision-making processes. This work focuses on the feasibility of using machine learning in a Raspberry Pi 4 Model B, solving the localization problem using images and fiducial markers (ArUco markers) in the context of the RobotAtFactory 4.0 competition. The approaches were validated using a realistically simulated scenario. Three algorithms were tested, and all were shown to be a good solution for a limited amount of data. Results also show that when the amount of data grows, only Multi-Layer Perception (MLP) is feasible for the embedded application due to the required training time and the resulting size of the model.
In the past decade, particularly smaller drones have started to claim their share of the sky due to their potential applications in the civil sector as flying-eyes, noses, and very recently as flying hands. Network partners from various application domains: safety, Agro, Energy & logistic are curious about the next leap in this field, namely, collaborative Sky-workers. Their main practical question is essentially: “Can multiple small drones transport a large object over a high altitude together in outdoor applications?” The industrial partners, together with Saxion and RUG, will conduct feasibility study to investigate if it is possible to develop these collaborative Sky-workers and to identify which possibilities this new technology will offer. Design science research methodology, which focuses on solution-oriented applied research involving multiple iterations with rigorous evaluations, will be used to research the feasibility of the main technological building blocks. They are: • Accurate localization based on onboard sensors. • Safe and optimal interaction controller for collaborative aerial transport Within this project, the first proof-of-concepts will be developed. The results of this project will be used to expand the existing network and formulate a bigger project to address additional critical aspects in order to develop a complete framework for collaborative drones.