Inkjet printing is a rapidly growing technology for depositing functional materials in the production of organic electronics. Challenges lie among others in the printing of high resolution patterns with high aspect ratio of functional materials to obtain the needed functionality like e.g. conductivity. μPlasma printing is a technology which combines atmospheric plasma treatment with the versatility of digital on demand printing technology to selectively change the wetting behaviour of materials. In earlier research it was shown that with μPlasma printing it is possible to selectively improve the wetting behaviour of functional inks on polymer substrates using atmospheric air plasma. In this investigation we show it is possible to selectively change the substrate wetting behaviour using combinations of different plasmas and patterned printing. For air and nitrogen plasmas, increased wetting of printed materials could be achieved on both polycarbonate and glass substrates. A minimal track width of 320 μm for a 200 μm wide plasma needle was achieved. A combination of N2 with HMDSO plasma increases the contact angle for water up from <100 to 1050 and from 320 to 460 for DEGDMA making the substrate more hydrophobic. Furthermore using N2-plasma in combination with a N2/HMDSO plasma, hydrophobic tracks could be printed with similar minimal track width. Combining both N2 -plasma and N2/HMDSO plasma treatments show promising results to further decrease the track width to even smaller values.
DOCUMENT
The proposed bi-functional protective structure intended to have hydrophilic interior towards the skin surface and hydrophobic exterior for protection, ensuring fast transfer of moisture between body and external environment. The sandwich structure is prepared using 100% wool jersey and varieties of 100% polyester fabrics. Hydrophilic treatments were given using cutinase (fusarium solani pisi) enzyme and commercial hydrophilic softener Ruco Pur Sly®. The polyester fabrics were given a hydrophobic treatment with Ruco Dry Eco® - a commercial cationic water repellent preparation. Variables include enzyme treatment time, and change in pressure to achieve suitable wet pick up at foulard. Several wool-polyester sandwich structures with optimum hydrophilic/hydrophobic properties were made by thermal adhesion using thin polyamide layer. Drop test and vapour permeability test were conducted to evaluate wetting properties and breathability of the samples. Sandwich structure comprising hydrophilic wool-jersey and hydrophobic PES spacer fabric showed the highest value for water vapour permeability. Paper written by the Saxion chair Smart Functional Materials and the Technical University of Iasi, Romania, for and accepted by the Autex Conference 2013.
MULTIFILE
In this article we investigate the change in wetting behavior of inkjet printed materials on either hydrophilic or hydrophobic plasma treated patterns, to determine the minimum obtainable track width using selective patterned μPlasma printing. For Hexamethyl-Disiloxane (HMDSO)/N2 plasma, a decrease in surface energy of approx. 44 mN/m was measured. This resulted in a change in contact angle for water from <10 up to 105 degrees, and from 32 up to 46 degrees for Diethyleneglycol-Dimethaclylate (DEGDMA). For both the nitrogen, air and HMDSO/N2 plasma single pixel wide track widths of approx. 320 μm were measured at a plasma print height of 50 μm. Combining hydrophilic pretreatment of the glass substrate, by UV/Ozone or air μPlasma printing, with hydrophobic HMDSO/N2 plasma, the smallest hydrophilic area found was in the order of 300 μm as well.
DOCUMENT